Skip to Content
Merck
  • Bioreducible polyether-based pDNA ternary polyplexes: balancing particle stability and transfection efficiency.

Bioreducible polyether-based pDNA ternary polyplexes: balancing particle stability and transfection efficiency.

Colloids and surfaces. B, Biointerfaces (2011-10-18)
Tsz Chung Lai, Kazunori Kataoka, Glen S Kwon
ABSTRACT

Polyplex particles formed with plasmid DNA (pDNA) and Pluronic P85-block-poly{N-[N-(2-aminoethyl)-2-aminoethyl]aspartamide} (P85-b-P[Asp(DET)]) demonstrated highly effective transfection ability compared to PEG-based block cationomer, PEG-b-P[Asp(DET)]. Ternary polyplexes comprising PEG-b-P[Asp(DET)], poly(ethylene oxide)-b-poly(propylene oxide)-b-poly(ethylene oxide)-b-P[Asp(DET)] (P(EPE)-b-P[Asp(DET)]) used as an analog of P85-b-P[Asp(DET)], and pDNA were prepared in this work aiming at maintaining adequate transfection efficiency while solving the stability issues of the P85-b-P[Asp(DET)] polyplexes. Furthermore, a bioreducible P(EPE)-SS-P[Asp(DET)] possessing a redox potential-sensitive disulfide linkage between the P(EPE) polymer and the cationic block was used as a substitute for P(EPE)-b-P[Asp(DET)] during ternary complex formation to investigate whether the transfection ability of the ternary polyplex system could be enhanced by triggered release of P(EPE) polymers from the polyplexes. The ternary complexes showed significant improvement in terms of stability against salt-induced aggregation compared to binary complexes, although the gene delivery ability dropped with the amount of PEG-b-P[Asp(DET)] used for complexation. By manipulating the difference in redox potential between the extracellular and intracellular environments, the reducible ternary complexes achieved higher transfection compared to the non-reducible polyplexes; moreover, the reducible polyplexes exhibited comparable stability to the non-reducible ones. These results suggest that reducible ternary complexes could provide satisfactory transfection efficiency without comprising the colloidal stability of the particles.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Poloxamer 188, micronized
Sigma-Aldrich
Poloxamer 188 solution, 10%, sterile-filtered, BioReagent, suitable for insect cell culture
Sigma-Aldrich
Poly(ethylene glycol)-block-poly(propylene glycol)-block-poly(ethylene glycol), average Mn ~2,000
Sigma-Aldrich
Synperonic® PE/P84
Sigma-Aldrich
Poloxamer 407, micronized
Sigma-Aldrich
Poloxamer 188
Sigma-Aldrich
Poloxamer 407, purified, non-ionic
Sigma-Aldrich
Poly(ethylene glycol)-block-poly(propylene glycol)-block-poly(ethylene glycol), average Mn ~8,400
Sigma-Aldrich
Poloxamer 407, oxyethylene 71.5-74.9 %
Sigma-Aldrich
Synperonic® F 108, surfactant, non-ionic
Sigma-Aldrich
Poly(ethylene glycol)-block-poly(propylene glycol)-block-poly(ethylene glycol), average Mn ~1,100
Sigma-Aldrich
Poly(ethylene glycol)-block-poly(propylene glycol)-block-poly(ethylene glycol), average Mn ~5,800
Sigma-Aldrich
Poly(ethylene glycol)-block-poly(propylene glycol)-block-poly(ethylene glycol), average Mn ~2,900
Sigma-Aldrich
Poly(ethylene glycol)-block-poly(propylene glycol)-block-poly(ethylene glycol), average Mn ~14,600
Sigma-Aldrich
Pluronic® F-127, powder, BioReagent, suitable for cell culture
Sigma-Aldrich
Poly(ethylene glycol)-block-poly(propylene glycol)-block-poly(ethylene glycol), average Mn ~4,400
Sigma-Aldrich
Poly(propylene glycol)-block-poly(ethylene glycol)-block-poly(propylene glycol), average Mn ~2,000
Sigma-Aldrich
Poloxamer 188, solid
Sigma-Aldrich
Poly(propylene glycol)-block-poly(ethylene glycol)-block-poly(propylene glycol), average Mn ~3,300
Sigma-Aldrich
Poly(ethylene glycol)-block-poly(propylene glycol)-block-poly(ethylene glycol), average Mn ~1,900
Sigma-Aldrich
Synperonic® PE P105, surfactant