Skip to Content
Merck
All Photos(3)

Key Documents

277959

Sigma-Aldrich

Indium

powder, 99.99% trace metals basis

Sign Into View Organizational & Contract Pricing


About This Item

Empirical Formula (Hill Notation):
In
CAS Number:
Molecular Weight:
114.82
EC Number:
MDL number:
UNSPSC Code:
12141719
PubChem Substance ID:
NACRES:
NA.23

vapor pressure

<0.01 mmHg ( 25 °C)

Assay

99.99% trace metals basis

form

powder

resistivity

8.37 μΩ-cm

mp

156.6 °C (lit.)

density

7.3 g/mL at 25 °C (lit.)

SMILES string

[In]

InChI

1S/In

InChI key

APFVFJFRJDLVQX-UHFFFAOYSA-N

Looking for similar products? Visit Product Comparison Guide

General description

Indium is a silvery-white soft metal with aface-centered tetragonal crystalline structure. It becomes superconductingat 3.37 K. It improves alloys′ hardness, corrosion resistance, andstrength.

Application

Indium can be used as a:

  • Dopant to tune the electrical and photoelectrical properties of CdSe nanowires.
  • Negative electrode material for Mg-ion batteries.
  • Reducing agent in many organic transformations because of its low first ionization potential.

Pictograms

FlameExclamation mark

Signal Word

Danger

Hazard Statements

Hazard Classifications

Acute Tox. 4 Inhalation - Eye Irrit. 2 - Flam. Sol. 1 - Skin Irrit. 2 - STOT SE 3

Target Organs

Respiratory system

Storage Class Code

4.1B - Flammable solid hazardous materials

WGK

WGK 3

Flash Point(F)

Not applicable

Flash Point(C)

Not applicable

Personal Protective Equipment

dust mask type N95 (US), Eyeshields, Gloves

Certificates of Analysis (COA)

Search for Certificates of Analysis (COA) by entering the products Lot/Batch Number. Lot and Batch Numbers can be found on a product’s label following the words ‘Lot’ or ‘Batch’.

Already Own This Product?

Find documentation for the products that you have recently purchased in the Document Library.

Visit the Document Library

Customers Also Viewed

Tuning electrical and photoelectrical properties of CdSe nanowires via indium doping.
Zhubing He et al.
Small (Weinheim an der Bergstrasse, Germany), 5(3), 345-350 (2008-12-06)
Juan Zhou et al.
Chemical communications (Cambridge, England), 49(22), 2237-2239 (2013-02-12)
A reduced graphene oxide (RGO)-ZnIn(2)S(4) nanosheet composite was successfully synthesized via an in situ controlled growth process. The as-obtained RGO-ZnIn(2)S(4) composite showed excellent visible light H(2) production activity in the absence of noble metal cocatalysts.
Yongseok Kwon et al.
Organic letters, 15(4), 920-923 (2013-02-05)
This paper documents the first example of In(III)-catalyzed selective 6-exo-dig hydroarylation of o-propargylbiaryls and their subsequent double-bond migration to obtain functionalized phenanthrenes. Electron-rich biaryl substrates undergo hydroarylation more effectively, and the substrates with various types of substituents on the alkyne
Han-Youl Ryu et al.
Optics express, 21 Suppl 1, A190-A200 (2013-02-15)
We investigate the dependence of various efficiencies in GaN-based vertical blue light-emitting diode (LED) structures on the thickness and doping concentration of the n-GaN layer by using numerical simulations. The electrical efficiency (EE) and the internal quantum efficiency (IQE) are
Annick Bay et al.
Optics express, 21 Suppl 1, A179-A189 (2013-02-15)
In this paper the design, fabrication and characterization of a bioinspired overlayer deposited on a GaN LED is described. The purpose of this overlayer is to improve light extraction into air from the diode's high refractive-index active material. The layer

Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.

Contact Technical Service