223921
Ascarite®
Sodium hydroxide-coated silica, 20-30 mesh
Synonym(s):
Ascarite CO2 adsorbent
Sign Into View Organizational & Contract Pricing
All Photos(3)
About This Item
Recommended Products
Quality Level
form
granular
particle size
20-30 mesh
InChI
1S/Na.H2O/h;1H2/q+1;/p-1
InChI key
HEMHJVSKTPXQMS-UHFFFAOYSA-M
Looking for similar products? Visit Product Comparison Guide
General description
Ascarite® is sodium hydroxide coated silica mainly used as carbon dioxide adsorbents. It is the second generation of the original Ascarite, which was derived from granular asbestos. Ascarite rapidly and quantitatively adsorbs carbon dioxide, (and acid gases), and is useful in a number of analytical and microanalytical procedures, physiological studies, etc.
Application
Ascarite® can be used as a carbon dioxide (CO2) trap.
Features and Benefits
The material is self-indicating, gradually changing color (to white) within a narrow zone due to the formation of sodium carbonate.
Legal Information
Ascarite is a registered trademark of Arthur H. Thomas Co.
Signal Word
Danger
Hazard Statements
Precautionary Statements
Hazard Classifications
Eye Dam. 1 - Met. Corr. 1 - Skin Corr. 1A
Storage Class Code
8B - Non-combustible corrosive hazardous materials
WGK
WGK 3
Flash Point(F)
Not applicable
Flash Point(C)
Not applicable
Personal Protective Equipment
dust mask type N95 (US), Eyeshields, Gloves
Certificates of Analysis (COA)
Search for Certificates of Analysis (COA) by entering the products Lot/Batch Number. Lot and Batch Numbers can be found on a product’s label following the words ‘Lot’ or ‘Batch’.
Already Own This Product?
Find documentation for the products that you have recently purchased in the Document Library.
Customers Also Viewed
Reduction of [11C] CO2 to [11C] CO using solid supported zinc.
Journal of Labelled Compounds & Radiopharmaceuticals, 60(13), 624-628 (2017)
Highly selective iron-based Fischer?Tropsch catalysts activated by CO2-containing syngas
J. Catal., 317, 135-143 (2014)
Langmuir : the ACS journal of surfaces and colloids, 29(5), 1709-1716 (2013-01-15)
The dissociative adsorption and electrooxidation of CH(3)OH at a Pd electrode in alkaline solution are investigated by using in situ infrared spectroscopy with both internal and external reflection modes. The former (ATR-SEIRAS) has a higher sensitivity of detecting surface species
Carbohydrate polymers, 92(2), 1752-1760 (2013-02-13)
In this work, a series of cellulose/collagen hydrolysate (RC/CH) films were prepared in NaOH/urea aqueous solution via a simple, low-cost and green pathway. To overcome the disadvantages (brittleness, poor water resistance) of CH as biomaterials, CH was combined with regenerated
Stability of inclusion complex formed by cellulose in NaOH/urea aqueous solution at low temperature.
Carbohydrate polymers, 92(2), 1315-1320 (2013-02-13)
Cellulose has been demonstrated to be dissolved in 7 wt% NaOH/12 wt% urea aqueous solution pre-cooled to -12 °C, as a result of the formation of inclusion complexes (ICs) associated with cellulose, urea and NaOH. However, this cellulose solution is
Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.
Contact Technical Service