Skip to Content
Merck
All Photos(1)

Documents

SML0594

Sigma-Aldrich

CGP 55845 hydrochloride

≥98% (HPLC)

Synonym(s):

(2S)-3-[[(1S)-1-(3,4-Dichlorophenyl)ethyl]amino-2-hydro xypropyl](phenylmethyl)phosphinic acid hydrochloride, CGP 55845A, CGP55845

Sign Into View Organizational & Contract Pricing


About This Item

Empirical Formula (Hill Notation):
C18H22Cl2NO3P · HCl
CAS Number:
Molecular Weight:
438.71
UNSPSC Code:
12352200
NACRES:
NA.77

Quality Level

Assay

≥98% (HPLC)

form

powder

storage condition

desiccated

color

white to beige

solubility

DMSO: 5 mg/mL, clear (warmed)

storage temp.

room temp

InChI

1S/C18H22Cl2NO3P/c1-13(15-7-8-17(19)18(20)9-15)21-10-16(22)12-25(23,24)11-14-5-3-2-4-6-14/h2-9,13,16,21-22H,10-12H2,1H3,(H,23,24)/t13-,16-/m0/s1

InChI key

ZODSPDOOCZZEIM-BBRMVZONSA-N

Biochem/physiol Actions

CGP 55845 is a potent selective GABA-B receptor antagonist with an IC50 of 5 nM.

Features and Benefits

This compound is a featured product for Neuroscience research. Click here to discover more featured Neuroscience products. Learn more about bioactive small molecules for other areas of research at sigma.com/discover-bsm.
This compound is featured on the GABAB Receptors page of the Handbook of Receptor Classification and Signal Transduction. To browse other handbook pages, click here.

Storage Class Code

11 - Combustible Solids

WGK

WGK 3

Flash Point(F)

Not applicable

Flash Point(C)

Not applicable


Certificates of Analysis (COA)

Search for Certificates of Analysis (COA) by entering the products Lot/Batch Number. Lot and Batch Numbers can be found on a product’s label following the words ‘Lot’ or ‘Batch’.

Already Own This Product?

Find documentation for the products that you have recently purchased in the Document Library.

Visit the Document Library

Court A Hull et al.
The Journal of neuroscience : the official journal of the Society for Neuroscience, 33(14), 5895-5902 (2013-04-05)
Golgi cells (GoCs) are inhibitory interneurons that influence the cerebellar cortical response to sensory input by regulating the excitability of the granule cell layer. While GoC inhibition is essential for normal motor coordination, little is known about the circuit dynamics
Michael H Myoga et al.
The Journal of neuroscience : the official journal of the Society for Neuroscience, 31(14), 5235-5243 (2011-04-08)
R-type calcium channels in postsynaptic spines signal through functional calcium microdomains to regulate a calcium/calmodulin-sensitive potassium channel that in turn regulates postsynaptic hippocampal long-term potentiation (LTP). Here, we ask whether R-type calcium channels in presynaptic terminals also signal through calcium
Dustin Anderson et al.
The Journal of neuroscience : the official journal of the Society for Neuroscience, 33(18), 7811-7824 (2013-05-03)
Synaptic transmission and neuronal excitability depend on the concentration of extracellular calcium ([Ca](o)), yet repetitive synaptic input is known to decrease [Ca](o) in numerous brain regions. In the cerebellar molecular layer, synaptic input reduces [Ca](o) by up to 0.4 mm
Volodymyr Dzhala et al.
The Journal of neuroscience : the official journal of the Society for Neuroscience, 32(12), 4017-4031 (2012-03-24)
Severe head trauma causes widespread neuronal shear injuries and acute seizures. Shearing of neural processes might contribute to seizures by disrupting the transmembrane ion gradients that subserve normal synaptic signaling. To test this possibility, we investigated changes in intracellular chloride
Carolina Cabezas et al.
The Journal of neuroscience : the official journal of the Society for Neuroscience, 32(34), 11835-11840 (2012-08-24)
Dentate gyrus granule cells have been suggested to corelease GABA and glutamate both in juvenile animals and under pathological conditions in adults. Although mossy fiber terminals (MFTs) are known to express glutamic acid decarboxylase (GAD) in early postnatal development, the

Articles

DISCOVER Bioactive Small Molecules for Neuroscience

DISCOVER Bioactive Small Molecules for Neuroscience

DISCOVER Bioactive Small Molecules for Neuroscience

DISCOVER Bioactive Small Molecules for Neuroscience

Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.

Contact Technical Service