Skip to Content
Merck
All Photos(3)

Documents

396141

Sigma-Aldrich

Strontium titanate

powder, 99%

Synonym(s):

Strontium titanium trioxide

Sign Into View Organizational & Contract Pricing


About This Item

Linear Formula:
SrTiO3
CAS Number:
Molecular Weight:
183.49
EC Number:
MDL number:
UNSPSC Code:
12352300
PubChem Substance ID:
NACRES:
NA.23

Assay

99%

form

powder

reaction suitability

reagent type: catalyst
core: titanium

mp

2060 °C (lit.)

density

4.81 g/mL at 25 °C (lit.)

SMILES string

[Sr++].[O-][Ti]([O-])=O

InChI

1S/3O.Sr.Ti/q;2*-1;+2;

InChI key

VEALVRVVWBQVSL-UHFFFAOYSA-N

Looking for similar products? Visit Product Comparison Guide

Storage Class Code

11 - Combustible Solids

WGK

WGK 3

Flash Point(F)

Not applicable

Flash Point(C)

Not applicable

Personal Protective Equipment

dust mask type N95 (US), Eyeshields, Gloves

Certificates of Analysis (COA)

Search for Certificates of Analysis (COA) by entering the products Lot/Batch Number. Lot and Batch Numbers can be found on a product’s label following the words ‘Lot’ or ‘Batch’.

Already Own This Product?

Find documentation for the products that you have recently purchased in the Document Library.

Visit the Document Library

Archana Pandey et al.
ACS nano, 7(1), 117-125 (2012-12-04)
Novel PMMA-STO-CNT matrices were created by opened-tip vertically aligned multiwalled carbon nanotubes (VA-MWCNTs) with conformal coatings of strontium titanate (STO) and poly(methyl methacrylate) (PMMA). Emission threshold of 0.8 V/μm was demonstrated, about 5-fold lower than that of the as-grown VA-MWCNTs.
Qiang Xu et al.
Ultramicroscopy, 111(7), 912-919 (2011-06-15)
The knowledge of the valence electron distribution is essential for understanding the properties of materials. However this information is difficult to obtain from HREM images because it is easily obscured by the large scattering contribution of core electrons and by
Ralf Moos et al.
Sensors (Basel, Switzerland), 11(4), 3439-3465 (2011-12-14)
Resistive oxygen sensors are an inexpensive alternative to the classical potentiometric zirconia oxygen sensor, especially for use in harsh environments and at temperatures of several hundred °C or even higher. This device-oriented paper gives a historical overview on the development
Chemically driven nanoscopic magnetic phase separation at the SrTiO(3) (001)/La(1-x) Sr(x) CoO(3) interface.
Maria A Torija et al.
Advanced materials (Deerfield Beach, Fla.), 23(24), 2711-2715 (2011-04-21)
L Avilés Félix et al.
Nanotechnology, 23(49), 495715-495715 (2012-11-17)
The transport properties of ultra-thin SrTiO(3) (STO) layers grown over YBa(2)Cu(3)O(7) electrodes were studied by conductive atomic force microscopy at the nano-scale. A very good control of the barrier thickness was achieved during the deposition process. A phenomenological approach was

Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.

Contact Technical Service