コンテンツへスキップ
Merck

Nectin-3 links CRHR1 signaling to stress-induced memory deficits and spine loss.

Nature neuroscience (2013-05-07)
Xiao-Dong Wang, Yun-Ai Su, Klaus V Wagner, Charilaos Avrabos, Sebastian H Scharf, Jakob Hartmann, Miriam Wolf, Claudia Liebl, Claudia Kühne, Wolfgang Wurst, Florian Holsboer, Matthias Eder, Jan M Deussing, Marianne B Müller, Mathias V Schmidt
要旨

Stress impairs cognition via corticotropin-releasing hormone receptor 1 (CRHR1), but the molecular link between abnormal CRHR1 signaling and stress-induced cognitive impairments remains unclear. We investigated whether the cell adhesion molecule nectin-3 is required for the effects of CRHR1 on cognition and structural remodeling after early-life stress exposure. Postnatally stressed adult mice had decreased hippocampal nectin-3 levels, which could be attenuated by CRHR1 inactivation and mimicked by corticotropin-releasing hormone (CRH) overexpression in forebrain neurons. Acute stress dynamically reduced hippocampal nectin-3 levels, which involved CRH-CRHR1, but not glucocorticoid receptor, signaling. Suppression of hippocampal nectin-3 caused spatial memory deficits and dendritic spine loss, whereas enhancing hippocampal nectin-3 expression rescued the detrimental effects of early-life stress on memory and spine density in adulthood. Our findings suggest that hippocampal nectin-3 is necessary for the effects of stress on memory and structural plasticity and indicate that the CRH-CRHR1 system interacts with the nectin-afadin complex to mediate such effects.

材料
製品番号
ブランド
製品内容

Sigma-Aldrich
コルチコトロピン放出因子 ヒツジ, ≥95% (HPLC)