コンテンツへスキップ
Merck

Speciation of the ionizable antibiotic sulfamethazine on black carbon (biochar).

Environmental science & technology (2011-10-27)
Marc Teixidó, Joseph J Pignatello, José L Beltrán, Mercè Granados, Jordan Peccia
要旨

Adsorption of ionizable compounds by black carbon is poorly characterized. Adsorption of the veterinary antibiotic sulfamethazine (SMT; a.k.a., sulfadimidine; pK(a1) = 2.28, pK(a2) = 7.42) on a charcoal was determined as a function of concentration, pH, inorganic ions, and organic ions and molecules. SMT displayed unconventional adsorption behavior. Despite its hydrophilic nature (log K(ow) = 0.27), the distribution ratio K(d) at pH 5, where SMT(0) prevails, was as high as 10(6) L kg(-1), up to 10(4) times greater than literature reported K(oc). The K(d) decreases at high and low pH but not commensurate with the decline in K(ow) of the ionized forms. At pH 1, where SMT(+) is predominant and the surface is positive, a major driving force is π-π electron donor-acceptor interaction of the protonated aniline ring with the π-electron rich graphene surface, referred to as π(+)-π EDA, rather than ordinary electrostatic cation exchange. In the alkaline region, where SMT(-) prevails and the surface is negative, adsorption is accompanied by near-stoichiometric proton exchange with water, leading to the release of OH(-) and formation of an exceptionally strong H-bond between SMT(0) and a surface carboxylate or phenolate, classified as a negative charge-assisted H-bond, (-)CAHB. At pH 5, SMT(0) adsorption is accompanied by partial proton release and is competitive with trimethylphenylammonium ion, signifying contributions from SMT(+) and/or the zwitterion, SMT(±), which take advantage of π(+)-π EDA interaction and Coulombic attraction to deprotonated surface groups. In essence, both pK(a1) and pK(a2) increase, and SMT(±) is stabilized, in the adsorbed relative to the dissolved state.

材料
製品番号
ブランド
製品内容

Sigma-Aldrich
スルファメタジン, 99.0-101.0% (on dried basis)
Supelco
スルファメタジン, VETRANAL®, analytical standard