おすすめの製品
詳細
Band gap: 1.83 eV
アッセイ
≥99%
形状
solid
分子量
1518.20 g/mol
色
dark
溶解性
chloroform: soluble
軌道エネルギー
HOMO -5.52 eV
LUMO -3.69 eV
詳細
Non-fullerene acceptors (NFAs) are currently a major focus of research in the development of bulk-heterojunction organic solar cells (OSCs). In contrast to the widely used fullerene acceptors (FAs), the optical properties and electronic energy levels of NFAs can be designed and readily tuned. NFA-based OSCs can also achieve greater thermal stability and photochemical stability, as well as longer device lifetimes, than their FA-based counterparts.Recent developments have led to a rapid increase in power conversion efficiencies for NFA OSCs, with values now exceeding 15% in a single junction cell, and >17% for a tandem cell, demonstrating the viability of using NFAs to replace FAs in next-generation high-performance OSCs.
アプリケーション
IDT-2BR is a medium-high bandgap non fullerene acceptors (NFAs) which can be utilized as a p-dopant in the fabrication of p-type organic semiconductors for OFETs (Organic Field-Effect Transistors). IDT-2Br is used as a halogen-based flame retardant additive in the production of printed circuit boards (PCBs). It helps improve the fire resistance of PCB materials, ensuring their safety during use. It can be incorporated into the polymer or small molecule-based photoactive materials, contributing to the absorption of light and facilitating charge generation in the OPV device. Its presence in the active layer can help enhance the light absorption and power conversion efficiency of the solar cell.
IDT-2BR is a medium-high bandgap nonfullerene acceptors (NFAs). It was reported that IDT-2BR could produce a high power conversion efficiency (PCE) of over 10% when used with low-bandgap p-type polymer PTB7-Th (Product No. 794333). A prominent feature of this blend is the very small energy loss (< 0.6 eV) in the cell, which allows for a very high open circuit voltages in the device (> 1 V).
Ternary blend organic solar cells (OSCs) with photoresponses beyond 1000 nm can be fabricated using PTB7-Th as donor and ultralow-bandgap F8IC and medium-high bandgap IDT-2BR as NFAs. A PCE of 12.1% has been achieved by such a ternary device with 20% IDT-2BR content in acceptors. In this work, IDT-2BR was found to contribute simultanously to the improvement of the open-circuit voltage (VOC), short-circuit (JSC) and fill factor (FF) of the PTB7-Th/F8IC blend, due to smaller energy offset for charge separation, suppressed charge recombination, and imporved light absorption. Improved packing due to the coexsitence of F8IC and IDT-2BR leads to higher mobilities and more balanced charge transport, which contribute to the improved FF as well.
Additionaly, blends with IDT-2BR have been found to be thermally stable at 150 Celsius.
A ternary blend using both IDT-2BR and fullerene based acceptor: PC71BM (Product No. 684465) has also reached a PCE over 12%.
Ternary blend organic solar cells (OSCs) with photoresponses beyond 1000 nm can be fabricated using PTB7-Th as donor and ultralow-bandgap F8IC and medium-high bandgap IDT-2BR as NFAs. A PCE of 12.1% has been achieved by such a ternary device with 20% IDT-2BR content in acceptors. In this work, IDT-2BR was found to contribute simultanously to the improvement of the open-circuit voltage (VOC), short-circuit (JSC) and fill factor (FF) of the PTB7-Th/F8IC blend, due to smaller energy offset for charge separation, suppressed charge recombination, and imporved light absorption. Improved packing due to the coexsitence of F8IC and IDT-2BR leads to higher mobilities and more balanced charge transport, which contribute to the improved FF as well.
Additionaly, blends with IDT-2BR have been found to be thermally stable at 150 Celsius.
A ternary blend using both IDT-2BR and fullerene based acceptor: PC71BM (Product No. 684465) has also reached a PCE over 12%.
保管分類コード
13 - Non Combustible Solids
WGK
WGK 3
引火点(°F)
Not applicable
引火点(℃)
Not applicable
適用法令
試験研究用途を考慮した関連法令を主に挙げております。化学物質以外については、一部の情報のみ提供しています。 製品を安全かつ合法的に使用することは、使用者の義務です。最新情報により修正される場合があります。WEBの反映には時間を要することがあるため、適宜SDSをご参照ください。
Jan Code
910635-VAR:
910635-100MG:
910635-BULK:
試験成績書(COA)
製品のロット番号・バッチ番号を入力して、試験成績書(COA) を検索できます。ロット番号・バッチ番号は、製品ラベルに「Lot」または「Batch」に続いて記載されています。
High-performance ternary organic solar cells with photoresponses beyond 1000 nm
Journal of Material Chemistry A, 6(47), 24210-24215 (2018)
Efficient device engineering for inverted non-fullerene organic solar cells with low energy loss
Journal of Material Chemistry C, 6 (16), 4457-4463 (2018)
Advanced materials (Deerfield Beach, Fla.), 29(11) (2017-01-20)
A new, easy, and efficient approach is reported to enhance the driving force for charge transfer, break tradeoff between open-circuit voltage and short-circuit current, and simultaneously achieve very small energy loss (0.55 eV), very high open-circuit voltage (>1 V), and
ACS applied materials & interfaces, 10(30), 25570-25579 (2018-07-10)
Ternary blending is an effective strategy for broadening the absorption range of the active layer in bulk heterojunction polymer solar cells and for constructing an efficient cascade energy landscape at the donor/acceptor interface to achieve high efficiencies. In this study
資料
Professor Chen(南開大学、中国)とそのチームは、有機太陽電池の背後にあるこれまでの記録を塗り替える、17.3%の電力変換効率を達成した最近の戦略を説明しています。
Professor Chen (Nankai University, China) and his team explain the strategies behind their recent record-breaking organic solar cells, reaching a power conversion efficiency of 17.3%.
ライフサイエンス、有機合成、材料科学、クロマトグラフィー、分析など、あらゆる分野の研究に経験のあるメンバーがおります。.
製品に関するお問い合わせはこちら(テクニカルサービス)