Skip to Content
Merck
All Photos(1)

Documents

Safety Information

V800131

Sigma-Aldrich

Copper(II) oxide

LR, ≥97%

Synonym(s):

Cupric oxide

Sign Into View Organizational & Contract Pricing


About This Item

Empirical Formula (Hill Notation):
CuO
CAS Number:
Molecular Weight:
79.55
EC Number:
MDL number:
UNSPSC Code:
12352303
PubChem Substance ID:

grade

LR

product line

Vetec

Assay

≥97%

form

powder

SMILES string

[Cu]=O

InChI

1S/Cu.O

InChI key

QPLDLSVMHZLSFG-UHFFFAOYSA-N

Looking for similar products? Visit Product Comparison Guide

Legal Information

Vetec is a trademark of Merck KGaA, Darmstadt, Germany

Pictograms

Environment

Signal Word

Warning

Hazard Statements

Precautionary Statements

Hazard Classifications

Aquatic Acute 1 - Aquatic Chronic 1

Storage Class Code

13 - Non Combustible Solids

WGK

WGK 3

Flash Point(F)

Not applicable

Flash Point(C)

Not applicable


Regulatory Listings

Regulatory Listings are mainly provided for chemical products. Only limited information can be provided here for non-chemical products. No entry means none of the components are listed. It is the user’s obligation to ensure the safe and legal use of the product.

ISHL Indicated Name

Substances Subject to be Indicated Names

ISHL Notified Names

Substances Subject to be Notified Names

JAN Code

V800131-BULK:
V800131-VAR:
V800131-500G:4548173323473


Certificates of Analysis (COA)

Search for Certificates of Analysis (COA) by entering the products Lot/Batch Number. Lot and Batch Numbers can be found on a product’s label following the words ‘Lot’ or ‘Batch’.

Already Own This Product?

Find documentation for the products that you have recently purchased in the Document Library.

Visit the Document Library

Hongwen Huang et al.
Nanoscale, 5(5), 1785-1788 (2013-01-31)
A facile, flexible and large-scale technique was proposed to prepare a CuO-CNT 3D-network composite with the aid of electrostatic interactions in aqueous solution. The composite greatly improves the electrochemical performance. At a rate of 0.1 C, the cycling discharge capacity
Lisha Zhou et al.
Nanoscale, 5(4), 1564-1569 (2013-01-18)
Stable Cu(2)O nanocrystals of around 3 nm were uniformly and densely grown on functionalized graphene sheets (FGS), which act as molecular templates instead of surfactants for controlled nucleation; the distribution density of nanocrystals can be easily controlled by FGS with
Qiao bao Zhang et al.
Nanotechnology, 24(6), 065602-065602 (2013-01-24)
Reversible superhydrophobic and superhydrophilic surfaces based on porous substrates covered with CuO nanowires are developed in this study. A facile thermal oxidation method is used to synthesize non-flaking bicrystalline CuO nanowires on porous copper substrates in static air. The effects
Wei Jian Foo et al.
Nanoscale, 5(2), 759-764 (2012-12-12)
Here we have demonstrated the preparation of high-quality, monodispersed and tunable phases of Cu nanoparticles. Structural and chemical composition studies depict the evolution of Cu-Cu(2)O-CuO nanoparticles at various process stages. The loading of Cu and Cu oxide nanoparticles on TiO(2)
Yinon Yecheskel et al.
Chemosphere, 93(1), 172-177 (2013-06-22)
The catalytic degradation of two brominated flame retardants (BFRs), tribromoneopentyl alcohol (TBNPA) and 2,4 dibromophenol (2,4-DBP) by copper oxide nanoparticles (nCuO) was investigated. The degradation kinetics, the debromination, and the formation of intermediates by nCuO catalysis were also compared to

Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.

Contact Technical Service