Skip to Content
Merck
All Photos(2)

Documents

Safety Information

OGS534

Sigma-Aldrich

PSF-TEFI-URA3 - URACIL YEAST SELECTION PLASMID

plasmid vector for molecular cloning

Synonym(s):

cloning vector, expression vector, molecular cloning vector, plasmid, plasmid vector, snapfast vector, vector

Sign Into View Organizational & Contract Pricing


About This Item

UNSPSC Code:
12352200
NACRES:
NA.85

form

buffered aqueous solution

mol wt

size 6720 bp

bacteria selection

kanamycin

Origin of replication

2Micron
pUC (500 copies)

Peptide cleavage

no cleavage

Promoter

Promoter name: TEF1
Promoter activity: constitutive
Promoter type: yeast

reporter gene

none

shipped in

ambient

storage temp.

−20°C

yeast selection

uracil

General description

PSF-TEFI-URA3 – uracil yeast selection plasmid is a yeast expression plasmid vector containing the yeast EF1a strong constitutive promoter and the URA3 selection marker to allow growth in the absence of uracil. PSF-TEFI-URA3 – uracil yeast selection expression plasmid is designed for the production proteins in Saccharomyces cerevisiae with selection on media that is deficient in the metabolite uracil. The vector contains the constitutive TEF1 yeast promoter to drive the expression of a gene of interest. It also contains a gene that is an essential component of the uracil synthesis pathway. This allows the plasmid to be maintained in yeast cells that have this gene deleted on media that does not contain uracil. This is the most commonly used selection method for Saccharomyces cerevisiae. We also provide other metabolite selection yeast plasmids that use histidine leucine or tryptophan as the selection method. We also provide plasmids using small molecule selection such as puromycin and blasticidin.

Promoter Expression Level: This plasmid contains the yeast translation elongation factor 1 promoter. It is the strongest promoter that we provide for expression in Saccharomyces cerevisiae.

Application

Cloning in a gene: PSF-TEFI-URA3 – uracil yeast selection plasmid has been designed to be compatible with a range of cloning techniques. The multiple cloning site contains a range of standard commonly used restriction sites for cloning. Using these sites genes can be inserted using standard cloning methods with DNA ligase. Other methods such as ligase independent cloning (LIC) Gibson Assembly InFusionHD or Seamless GeneArt can also be used and because all of our plasmids are based on the same backbone the same method can be used for cloning into all of our catalogue vectors.

Multiple cloning site notes: There are a few important sites within the MCS. These include the NcoI site the XbaI site and the BsgI and BseRI sites. The NcoI site contains a start codon that is immediately downstream of both a Kozak and Shine-Dalgarno ribosomal binding site. These allow for optimal positioning of genes when the start codon is placed in this location. If this is not required and you wish to use a downstream site for gene cloning you can remove the NcoI site by cleaving the plasmid with KpnI.

The XbaI site contains a stop codon. This stop codon is positioned in a specific position in relation to the BsgI and BseRI sites that are immediately downstream. When either BseRI or BsgI cleave the plasmid they produce a TA overhang from the stop codon in the XbaI site that is compatible with all of our peptide tag plasmids cut with the same sites. BseRI and BsgI sites are non-palindromic and cleave a defined number of bases away from their binding site.

Whenever we clone a gene into our multiple cloning site we always position the start and stop codon in the same positions in the MCS. If the start and ends of the genes are not compatible with NcoI and XbaI we extend the sequence to the nearest external sites but keep the start and stop codons locations consistent.

Sequence

To view sequence information for this product, please visit the product page

Analysis Note

To view the Certificate of Analysis for this product, please visit www.oxgene.com

related product

Product No.
Description
Pricing

Storage Class Code

12 - Non Combustible Liquids

Flash Point(F)

Not applicable

Flash Point(C)

Not applicable


Regulatory Listings

Regulatory Listings are mainly provided for chemical products. Only limited information can be provided here for non-chemical products. No entry means none of the components are listed. It is the user’s obligation to ensure the safe and legal use of the product.

JAN Code

OGS534-5UG:


Certificates of Analysis (COA)

Search for Certificates of Analysis (COA) by entering the products Lot/Batch Number. Lot and Batch Numbers can be found on a product’s label following the words ‘Lot’ or ‘Batch’.

Already Own This Product?

Find documentation for the products that you have recently purchased in the Document Library.

Visit the Document Library

Alexander C Cerny et al.
PLoS genetics, 11(10), e1005578-e1005578 (2015-10-29)
Recycling of signaling proteins is a common phenomenon in diverse signaling pathways. In photoreceptors of Drosophila, light absorption by rhodopsin triggers a phospholipase Cβ-mediated opening of the ion channels transient receptor potential (TRP) and TRP-like (TRPL) and generates the visual
Geoffrey M Lynn et al.
Nature biotechnology, 33(11), 1201-1210 (2015-10-27)
The efficacy of vaccine adjuvants such as Toll-like receptor agonists (TLRa) can be improved through formulation and delivery approaches. Here, we attached small molecule TLR-7/8a to polymer scaffolds (polymer-TLR-7/8a) and evaluated how different physicochemical properties of the TLR-7/8a and polymer
Diana Romero et al.
Carcinogenesis, 37(1), 18-29 (2015-10-28)
Dickkopf-3 (Dkk-3) is a secreted protein whose expression is downregulated in many types of cancer. Endogenous Dkk-3 is required for formation of acini in 3D cultures of prostate epithelial cells, where it inhibits transforming growth factor (TGF)-β/Smad signaling. Here, we
Jin-Gyoung Jung et al.
PLoS genetics, 10(10), e1004751-e1004751 (2014-10-31)
The Notch3 signaling pathway is thought to play a critical role in cancer development, as evidenced by the Notch3 amplification and rearrangement observed in human cancers. However, the molecular mechanism by which Notch3 signaling contributes to tumorigenesis is largely unknown.

Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.

Contact Technical Service