Skip to Content
Merck
All Photos(1)

Documents

Safety Information

H3648

Sigma-Aldrich

(±)-3-Hydroxydecanoic acid

≥98%

Synonym(s):

DL-β-Hydroxycapric acid

Sign Into View Organizational & Contract Pricing


About This Item

Empirical Formula (Hill Notation):
C10H20O3
CAS Number:
Molecular Weight:
188.26
MDL number:
UNSPSC Code:
12352211
PubChem Substance ID:
NACRES:
NA.25

Assay

≥98%

form

powder

functional group

carboxylic acid

lipid type

saturated FAs

shipped in

ambient

storage temp.

2-8°C

SMILES string

CCCCCCCC(O)CC(O)=O

InChI

1S/C10H20O3/c1-2-3-4-5-6-7-9(11)8-10(12)13/h9,11H,2-8H2,1H3,(H,12,13)

InChI key

FYSSBMZUBSBFJL-UHFFFAOYSA-N

Application


  • LORE receptor homomerization is required for 3-hydroxydecanoic acid-induced immune signaling and determines the natural variation of immunosensitivity within the Arabidopsis genus.: This study unveils the crucial role of 3-Hydroxydecanoic acid in mediating immune responses through LORE receptor homomerization in plants, providing insights into the molecular mechanisms of plant defense and potential agricultural applications (Eschrig et al., 2024).


Storage Class Code

11 - Combustible Solids

WGK

WGK 3

Flash Point(F)

Not applicable

Flash Point(C)

Not applicable

Personal Protective Equipment

dust mask type N95 (US), Eyeshields, Gloves

Regulatory Listings

Regulatory Listings are mainly provided for chemical products. Only limited information can be provided here for non-chemical products. No entry means none of the components are listed. It is the user’s obligation to ensure the safe and legal use of the product.

JAN Code

H3648-BULK:
H3648-25MG:
H3648-5MG:
H3648-VAR:


Certificates of Analysis (COA)

Search for Certificates of Analysis (COA) by entering the products Lot/Batch Number. Lot and Batch Numbers can be found on a product’s label following the words ‘Lot’ or ‘Batch’.

Already Own This Product?

Find documentation for the products that you have recently purchased in the Document Library.

Visit the Document Library

B Füchtenbusch et al.
Applied microbiology and biotechnology, 53(2), 167-172 (2000-03-10)
Screening experiments identified several bacteria which were able to use residual oil from biotechnological rhamnose production as a carbon source for growth. Ralstonia eutropha H16 and Pseudomonas oleovorans were able to use this waste material as the sole carbon source
E Déziel et al.
Biochimica et biophysica acta, 1440(2-3), 244-252 (1999-10-16)
Liquid chromatography/mass spectrometry using electrospray ionisation was used to analyse rhamnolipids produced by a Pseudomonas aeruginosa strain with mannitol or naphthalene as carbon source. Identification and quantification of 28 different rhamnolipid congeners was accomplished using a reverse-phase C(18) column and
Hannes Löwe et al.
Biotechnology for biofuels, 10, 190-190 (2017-08-18)
One of the major challenges for the present and future generations is to find suitable substitutes for the fossil resources we rely on today. Cyanobacterial carbohydrates have been discussed as an emerging renewable feedstock in industrial biotechnology for the production
Highly regioselective Vilsmeier-Haack acylation of hexahydropyrroloindolizine.
B Sayah et al.
The Journal of organic chemistry, 66(7), 2522-2525 (2001-04-03)
A Hiraishi et al.
Antonie van Leeuwenhoek, 61(3), 231-236 (1992-04-01)
Nine Zoogloea strains including the type strain of Z. ramigera (IAM 12136 = ATCC 19544 = N.C. Dondero 106) and newly isolated strains were investigated for isoprenoid quinone composition and whole-cell fatty acid profiles. Seven of the tested strains, having

Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.

Contact Technical Service