Skip to Content
Merck
All Photos(1)

Documents

Safety Information

493953

Sigma-Aldrich

5-Methyl-1-hexanol

97%

Synonym(s):

5-Methylhexanol

Sign Into View Organizational & Contract Pricing


About This Item

Linear Formula:
(CH3)2CH(CH2)4OH
CAS Number:
Molecular Weight:
116.20
EC Number:
MDL number:
UNSPSC Code:
12352100
PubChem Substance ID:
NACRES:
NA.22

Assay

97%

refractive index

n20/D 1.422 (lit.)

bp

167-168 °C (lit.)

density

0.823 g/mL at 25 °C (lit.)

SMILES string

CC(C)CCCCO

InChI

1S/C7H16O/c1-7(2)5-3-4-6-8/h7-8H,3-6H2,1-2H3

InChI key

ZVHAANQOQZVVFD-UHFFFAOYSA-N

General description

5-Methyl-1-hexanol, an aliphatic alcohol, can be prepared by the reduction of 5-methylhexanoic acid. It is predicted to have a fruity odor based on fuzzy partition and self organising maps (SOM) analysis data.
5-Methyl-1-hexanol is a volatile organic compound found in:
  • Alstonia boonei leaves
  • ‘Hayward′ and ‘Hort16A′ kiwifruit
  • Tuber melanosporum fruiting body

Pictograms

FlameExclamation mark

Signal Word

Warning

Hazard Statements

Hazard Classifications

Acute Tox. 4 Oral - Flam. Liq. 3 - Skin Irrit. 2

Storage Class Code

3 - Flammable liquids

WGK

WGK 3

Flash Point(F)

86.0 °F

Flash Point(C)

30 °C


Regulatory Listings

Regulatory Listings are mainly provided for chemical products. Only limited information can be provided here for non-chemical products. No entry means none of the components are listed. It is the user’s obligation to ensure the safe and legal use of the product.

FSL

Group 4: Flammable liquids
Type 2 petroleums
Hazardous rank III
Water insoluble liquid

JAN Code

493953-BULK:
493953-VAR:
493953-1G:


Certificates of Analysis (COA)

Search for Certificates of Analysis (COA) by entering the products Lot/Batch Number. Lot and Batch Numbers can be found on a product’s label following the words ‘Lot’ or ‘Batch’.

Already Own This Product?

Find documentation for the products that you have recently purchased in the Document Library.

Visit the Document Library

Customers Also Viewed

GC-MS evaluation of bioactive compounds and antibacterial activity of the oil fraction from the leaves of Alstonia boonei De Wild.
Okwu DE and Ighodaro BU.
Der Pharma Chemica, 2(1), 261-262 (2010)
Prediction of odours of aliphatic alcohols and carbonylated compounds using fuzzy partition and self organising maps (SOM).
Audouze K, et al.
Analusis, 28(7), 625-632 (2000)
Nicolas Durand et al.
PloS one, 5(11), e15026-e15026 (2010-12-03)
Carboxyl/cholinesterases (CCEs) are highly diversified in insects. These enzymes have a broad range of proposed functions, in neuro/developmental processes, dietary detoxification, insecticide resistance or hormone/pheromone degradation. As few functional data are available on purified or recombinant CCEs, the physiological role
Richard Splivallo et al.
Phytochemistry, 68(20), 2584-2598 (2007-06-19)
Stir bar sorptive extraction (SBSE) was applied in head space mode (HS), coupled with GC/MS, to compare the aroma profile of three truffle species. A total of 119 volatile organic compounds (VOCs) were identified from the fruiting bodies, of which
Coralia V Garcia et al.
Food chemistry, 137(1-4), 45-54 (2012-12-04)
Bound volatiles are recognised as a potential source of aroma compounds in fruits. In this study, the bound volatiles of Actinidia deliciosa 'Hayward' and A. chinensis 'Hort16A' were studied at three different ripening stages. The bound volatile content tended to

Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.

Contact Technical Service