378348
Silicone oil
viscosity 20 cSt (25 °C)
Synonym(s):
PDMS, Polydimethylsiloxane
Sign Into View Organizational & Contract Pricing
All Photos(2)
About This Item
Recommended Products
vapor density
>1 (vs air)
vapor pressure
<5 mmHg ( 25 °C)
5 mmHg ( 20 °C)
form
viscous liquid
refractive index
n20/D 1.403 (lit.)
viscosity
20 cSt(25 °C)
bp
>140 °C/0.002 mmHg (lit.)
density
0.95 g/mL at 25 °C
Looking for similar products? Visit Product Comparison Guide
General description
Silicone oil is a liquid based siloxane that is part of the methyl silicone fluid system. It has a viscosity of 20 cSt with a refractive index of ~ 1.4 and a dielectric strength of ~ 14 kV/mm. It′s surface tension tends to increase with an increase in the viscosity.
Application
Silicone oil can be used for a variety of usages such as lubricants, antiflatulent agents, dielectric coolants, and cosmetic additives.
Storage Class Code
10 - Combustible liquids
WGK
WGK 1
Flash Point(F)
214.0 °F - closed cup
Flash Point(C)
101.1 °C - closed cup
Personal Protective Equipment
dust mask type N95 (US), Eyeshields, Gloves
Certificates of Analysis (COA)
Search for Certificates of Analysis (COA) by entering the products Lot/Batch Number. Lot and Batch Numbers can be found on a product’s label following the words ‘Lot’ or ‘Batch’.
Already Own This Product?
Find documentation for the products that you have recently purchased in the Document Library.
Customers Also Viewed
Silicones
Ullmann's Encyclopedia of Industrial Chemistry (2000)
Antifoaming agents
Encyclopedia of Polymer Science and Technology, 104(2), 527-535 (2001)
Mechanism of Stabilization of Silicone Oil- Water Emulsions Using Hybrid Siloxane Polymers
Langmuir, 24(9), 4558-4563 (2008)
Methods in molecular biology (Clifton, N.J.), 1001, 99-114 (2013-03-16)
Our ability to manipulate stem cells in order to induce differentiation along a desired developmental pathway has improved immeasurably in recent years. That is in part because we have a better understanding of the intracellular and extracellular signals that regulate
Aging cell, 12(3), 398-409 (2013-02-28)
Caenorhabditis elegans is a leading model organism for studying the basic mechanisms of aging. Progress has been limited, however, by the lack of an automated system for quantitative analysis of longevity and mean lifespan. To address this barrier, we developed
Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.
Contact Technical Service