Passa al contenuto
Merck
HomeCross-CouplingRhodium Catalyzed Asymmetric Suzuki Related Cross Coupling Reactions

Rhodium-Catalyzed Asymmetric Suzuki and Related Cross-Coupling Reactions

Stephen Webster, Laura Cunningham, and Stephen P. Fletcher†,* Department of Chemistry, Chemistry Research Laboratory, University of Oxford, Oxford OX1 3TA, United Kingdom

Abstract

We describe in this account our progress towards the development of new catalytic asymmetric cross-coupling reactions. We focus on the application of boronic acids in the synthesis of enantioenriched C(sp2)–C(sp3) coupled products from prochiral and racemic starting materials. Specifically, we describe the rhodium-catalyzed Suzuki–Miyaura-type arylations of allylic halides and cyclobutenes, their key mechanistic features, and their applications to complex-molecule synthesis and scale-up.

Introduction

C(sp2)–C(sp2) cross-coupling reactions are well established. In particular, the Suzuki–Miyaura cross-coupling (SMC) has emerged as a popular synthetic tool, owing to its experimental convenience and the robustness of the arylboronic acid reagents employed.1 Its ubiquitous application has biased the structures of drug candidate libraries towards unsaturated arene-rich scaffolds, despite low saturation and the absence of stereogenic centers reducing the chances of success in drug discovery programs.2,3 Therefore, developing synthetic reaction systems that combine the generality and practicality of the SMC but yield enantiomerically enriched products with C(sp3) centers has been an area of active research.3

Transition-metal-catalyzed asymmetric allylic addition and hydrofunctionalization of alkenes have become effective tools for enantioselectively forming C–C bonds.46 However, despite sporadic reports of aryl nucleophiles being utilized in these reactions, there are not yet generally useful and selective methods for employing (hetero)aryl species as nucleophiles.710

Our group has developed several enantioselective crosscouplings between (hetero)aromatic boronic acids and a variety of coupling partners. In the rest of this article, we will review our studies on the development and applications of these asymmetric arylations (Figure 1).

Summary and Outlook

In the field of asymmetric catalysis, developing reaction systems that can exploit the generality and practical simplicity of the Suzuki–Miyaura cross-coupling but yield enantiomerically enriched three-dimensional products with sp3 centers has been a longstanding challenge. We have developed a number of asymmetric Rh-catalyzed cross-couplings of sp2-hybridized boronic acid derivatives with allylic (pseudo)halides and mildly activated olefins. We have also demonstrated the applicability of these new methodologies on scales that are relevant to “real-world” process settings by scaling up an asymmetric cross-coupling reaction to give over 100 g of product.68 In that work, a racemic bicyclic substrate was coupled with furan-2- boronic acid pinacol ester using standard equipment available in an academic laboratory. The simplicity and typical efficiency of the reactions described above—both in terms of practical efficiency and atom economy—make these reactions an important step forward in developing useful asymmetric sp3–sp2 coupling reactions. There are, however, many major challenges that remain in developing such reactions before they can be widely used in a variety of transformations, in particular, the challenge of developing regio- and enantioselective reactions of acyclic and non-symmetrical acyclic racemic allyl halides. Developing and applying such methods that do not involve simple pseudo-symmetrical substrates offer many exciting opportunities in the future.

Related Products
Loading

References

(†) Stephen Webster − orcid.org/0000-0002-2445-8417; Laura Cunningham − orcid.org/0000-0002-3206-8435; Stephen P. Fletcher − orcid.org/0000-0001-7629-0997.

1.
Lennox AJJ, Lloyd-Jones GC. Selection of boron reagents for Suzuki–Miyaura coupling. Chem. Soc. Rev. 43(1):412-443. https://doi.org/10.1039/c3cs60197h
2.
Lovering F, Bikker J, Humblet C. 2009. Escape from Flatland: Increasing Saturation as an Approach to Improving Clinical Success. J. Med. Chem. 52(21):6752-6756. https://doi.org/10.1021/jm901241e
3.
Blakemore DC, Castro L, Churcher I, Rees DC, Thomas AW, Wilson DM, Wood A. 2018. Organic synthesis provides opportunities to transform drug discovery. Nature Chem. 10(4):383-394. https://doi.org/10.1038/s41557-018-0021-z
4.
Cheng Q, Tu H, Zheng C, Qu J, Helmchen G, You S. 2019. Iridium-Catalyzed Asymmetric Allylic Substitution Reactions. Chem. Rev. 119(3):1855-1969. https://doi.org/10.1021/acs.chemrev.8b00506
5.
Pàmies O, Margalef J, Cañellas S, James J, Judge E, Guiry PJ, Moberg C, Bäckvall J, Pfaltz A, Pericàs MA, et al. 2021. Recent Advances in Enantioselective Pd-Catalyzed Allylic Substitution: From Design to Applications. Chem. Rev. 121(8):4373-4505. https://doi.org/10.1021/acs.chemrev.0c00736
6.
Cherney AH, Kadunce NT, Reisman SE. 2015. Enantioselective and Enantiospecific Transition-Metal-Catalyzed Cross-Coupling Reactions of Organometallic Reagents To Construct C–C Bonds. Chem. Rev. 115(17):9587-9652. https://doi.org/10.1021/acs.chemrev.5b00162
7.
Shintani R, Takatsu K, Takeda M, Hayashi T. 2011. Copper‐Catalyzed Asymmetric Allylic Substitution of Allyl Phosphates with Aryl‐ and Alkenylboronates. Angew Chem Int Ed. 50(37):8656-8659. https://doi.org/10.1002/anie.201103581
8.
Polet D, Rathgeb X, Falciola C, Langlois J, El Hajjaji S, Alexakis A. 2009. Enantioselective Iridium‐Catalyzed Allylic Arylation. Chemistry A European J. 15(5):1205-1216. https://doi.org/10.1002/chem.200801879
9.
Ohmiya H, Makida Y, Li D, Tanabe M, Sawamura M. 2010. Palladium-Catalyzed γ-Selective and Stereospecific Allyl−Aryl Coupling between Acyclic Allylic Esters and Arylboronic Acids. J. Am. Chem. Soc. 132(2):879-889. https://doi.org/10.1021/ja9092264
10.
Guduguntla S, Hornillos V, Tessier R, Fañanás-Mastral M, Feringa BL. 2016. Chiral Diarylmethanes via Copper-Catalyzed Asymmetric Allylic Arylation with Organolithium Compounds. Org. Lett. 18(2):252-255. https://doi.org/10.1021/acs.orglett.5b03396
11.
Maksymowicz RM, Bissette AJ, Fletcher SP. 2015. Asymmetric Conjugate Additions and Allylic Alkylations Using Nucleophiles Generated by Hydro‐ or Carbometallation. Chemistry A European J. 21(15):5668-5678. https://doi.org/10.1002/chem.201405855
12.
Maksymowicz RM, Roth PMC, Fletcher SP. 2012. Catalytic asymmetric carbon–carbon bond formation using alkenes as alkylmetal equivalents. Nature Chem. 4(8):649-654. https://doi.org/10.1038/nchem.1394
13.
Sidera M, Roth PMC, Maksymowicz RM, Fletcher SP. 2013. Formation of Quaternary Centers by Copper‐Catalyzed Asymmetric Conjugate Addition of Alkylzirconium Reagents. Angew Chem Int Ed. 52(31):7995-7999. https://doi.org/10.1002/anie.201303202
14.
Roth PMC, Sidera M, Maksymowicz RM, Fletcher SP. 2014. Copper-catalyzed asymmetric conjugate addition of alkylzirconium reagents to cyclic enones to form quaternary centers. Nat Protoc. 9(1):104-111. https://doi.org/10.1038/nprot.2013.169
15.
You H, Rideau E, Sidera M, Fletcher SP. 2015. Non-stabilized nucleophiles in Cu-catalysed dynamic kinetic asymmetric allylic alkylation. Nature. 517(7534):351-355. https://doi.org/10.1038/nature14089
16.
Sidera M, Fletcher SP. Cu-catalyzed asymmetric addition of sp2-hybridized zirconium nucleophiles to racemic allyl bromides. Chem. Commun. 51(24):5044-5047. https://doi.org/10.1039/c5cc00421g
17.
Takaya Y, Ogasawara M, Hayashi T, Sakai M, Miyaura N. 1998. Rhodium-Catalyzed Asymmetric 1,4-Addition of Aryl- and Alkenylboronic Acids to Enones. J. Am. Chem. Soc. 120(22):5579-5580. https://doi.org/10.1021/ja980666h
18.
Menard F, Chapman TM, Dockendorff C, Lautens M. 2006. Rhodium-Catalyzed Asymmetric Allylic Substitution with Boronic Acid Nucleophiles. Org. Lett. 8(20):4569-4572. https://doi.org/10.1021/ol061777l
19.
Sidera M, Fletcher SP. 2015. Rhodium-catalysed asymmetric allylic arylation of racemic halides with arylboronic acids. Nature Chem. 7(11):935-939. https://doi.org/10.1038/nchem.2360
20.
Schäfer P, Palacin T, Sidera M, Fletcher SP. Asymmetric Suzuki-Miyaura coupling of heterocycles via Rhodium-catalysed allylic arylation of racemates. Nat Commun. 8(1): https://doi.org/10.1038/ncomms15762
21.
Cox PA, Leach AG, Campbell AD, Lloyd-Jones GC. 2016. Protodeboronation of Heteroaromatic, Vinyl, and Cyclopropyl Boronic Acids: pH–Rate Profiles, Autocatalysis, and Disproportionation. J. Am. Chem. Soc. 138(29):9145-9157. https://doi.org/10.1021/jacs.6b03283
22.
Flick AC, Leverett CA, Ding HX, McInturff E, Fink SJ, Helal CJ, O’Donnell CJ. 2019. Synthetic Approaches to the New Drugs Approved During 2017. J. Med. Chem. 62(16):7340-7382. https://doi.org/10.1021/acs.jmedchem.9b00196
23.
Wallace DJ, Baxter CA, Brands KJM, Bremeyer N, Brewer SE, Desmond R, Emerson KM, Foley J, Fernandez P, Hu W, et al. 2011. Development of a Fit-for-Purpose Large-Scale Synthesis of an Oral PARP Inhibitor. Org. Process Res. Dev. 15(4):831-840. https://doi.org/10.1021/op2000783
24.
Hughes DL. 2017. Patent Review of Manufacturing Routes to Recently Approved PARP Inhibitors: Olaparib, Rucaparib, and Niraparib. Org. Process Res. Dev. 21(9):1227-1244. https://doi.org/10.1021/acs.oprd.7b00235
25.
Chung CK, Bulger PG, Kosjek B, Belyk KM, Rivera N, Scott ME, Humphrey GR, Limanto J, Bachert DC, Emerson KM. 2014. Process Development of C–N Cross-Coupling and Enantioselective Biocatalytic Reactions for the Asymmetric Synthesis of Niraparib. Org. Process Res. Dev. 18(1):215-227. https://doi.org/10.1021/op400233z
26.
González J, van Dijk L, Goetzke FW, Fletcher SP. 2019. Highly enantioselective rhodium-catalyzed cross-coupling of boronic acids and racemic allyl halides. Nat Protoc. 14(10):2972-2985. https://doi.org/10.1038/s41596-019-0209-8
27.
Bexrud J, Lautens M. 2010. A Rhodium IBiox[(−)-menthyl] Complex as a Highly Selective Catalyst for the Asymmetric Hydroarylation of Azabicyles: An Alternative Route to Epibatidine. Org. Lett. 12(14):3160-3163. https://doi.org/10.1021/ol101067d
28.
Panteleev J, Menard F, Lautens M. 2008. Ligand Control in Enantioselective Desymmetrization of Bicyclic Hydrazines: Rhodium(I)‐Catalyzed Ring‐Opening versus Hydroarylation. Adv Synth Catal. 350(18):2893-2902. https://doi.org/10.1002/adsc.200800587
29.
Menard F, Lautens M. 2008. Chemodivergence in Enantioselective Desymmetrization of Diazabicycles: Ring‐Opening versus Reductive Arylation. Angew Chem Int Ed. 47(11):2085-2088. https://doi.org/10.1002/anie.200704708
30.
Chen T, Barton LM, Lin Y, Tsien J, Kossler D, Bastida I, Asai S, Bi C, Chen JS, Shan M, et al. 2018. Building C(sp3)-rich complexity by combining cycloaddition and C–C cross-coupling reactions. Nature. 560(7718):350-354. https://doi.org/10.1038/s41586-018-0391-9
31.
Goetzke FW, Mortimore M, Fletcher SP. 2019. Enantio‐ and Diastereoselective Suzuki–Miyaura Coupling with Racemic Bicycles. Angew Chem Int Ed. 58(35):12128-12132. https://doi.org/10.1002/anie.201906478
32.
Kučera R, Goetzke FW, Fletcher SP. 2020. An Asymmetric Suzuki–Miyaura Approach to Prostaglandins: Synthesis of Tafluprost. Org. Lett. 22(8):2991-2994. https://doi.org/10.1021/acs.orglett.0c00745
33.
Cunningham L, Mishra S, Matthews L, Fletcher SP. 2022. A General Catalyst Controlled Route to Prostaglandin F2α. Org. Lett. 24(48):8886-8889. https://doi.org/10.1021/acs.orglett.2c03718
34.
Matsumura Y, Mori N, Nakano T, Sasakura H, Matsugi T, Hara H, Morizawa Y. 2004. Synthesis of the highly potent prostanoid FP receptor agonist, AFP-168: a novel 15-deoxy-15,15-difluoroprostaglandin F 2α derivative. Tetrahedron Letters. 45(7):1527-1529. https://doi.org/10.1016/j.tetlet.2003.12.029
35.
Pozarowska D. Safety and tolerability of tafluprost in treatment of elevated intraocular pressure in open-angle glaucoma and ocular hypertension. OPTH.1229. https://doi.org/10.2147/opth.s6369
36.
Kerekes L, Domokos N. 1979. The effect of prostaglandin F2∝ on third stage labor. Prostaglandins. 18(1):161-166. https://doi.org/10.1016/s0090-6980(79)80034-9
37.
Boutureira O, Matheu MI, Díaz Y, Castillón S. 2013. Advances in the enantioselective synthesis of carbocyclic nucleosides. Chem. Soc. Rev. 42(12):5056. https://doi.org/10.1039/c3cs00003f
38.
Vorbrüggen H, Ruh‐Pohlenz C. 1999. Synthesis Of Nucleosides.1-630. https://doi.org/10.1002/0471264180.or055.01
39.
Ojeda‐Porras AC, Roy V, Agrofoglio LA. 2022. Chemical Approaches to Carbocyclic Nucleosides. The Chemical Record. 22(5): https://doi.org/10.1002/tcr.202100307
40.
Maier L, Khirsariya P, Hylse O, Adla SK, Černová L, Poljak M, Krajčovičová S, Weis E, Drápela S, Souček K, et al. 2017. Diastereoselective Flexible Synthesis of Carbocyclic C-Nucleosides. J. Org. Chem. 82(7):3382-3402. https://doi.org/10.1021/acs.joc.6b02594
41.
Converso A, Hartingh TJ, Fraley ME. January 14, 2014. AHCY Hydrolase Inhibitors for Treatment of Hyper Homocysteinemia. [Internet]. United States Patent. Available from: https://patentimages.storage. googleapis.com/84/8d/6c/c2195fefa3531a/US8629275.pdf
42.
Mishra S, Modicom FCT, Dean CL, Fletcher SP. Catalytic asymmetric synthesis of carbocyclic C-nucleosides. Commun Chem. 5(1): https://doi.org/10.1038/s42004-022-00773-6
43.
Afewerki S, Wang J, Liao W, Córdova A. 2019. The Chemical Synthesis and Applications of Tropane Alkaloids. The Alkaloids: Chemistry and Biology.151-233. https://doi.org/10.1016/bs.alkal.2018.06.001
44.
Pollini GP, Benetti S, De Risi C, Zanirato V. 2006. Synthetic Approaches to Enantiomerically Pure 8-Azabicyclo[3.2.1]Octane Derivatives. Chem. Rev.2434–2454. https://doi.org/10.1021/cr050995+
45.
(a) Zhang Y, Goetzke FW, Christensen KE, Fletcher SP. 2022. Asymmetric Synthesis of Nortropanes via Rh-Catalysed Allylic Arylation   ACS Catal. 12(15): 8995–9002 .  https:// doi.org/10.1021/acscatal.2c02259  (b) Zhang Y, Goetzke FW, Christensen KE, Fletcher SP. 2022. Asymmetric Synthesis of Nortropanes via Rh-Catalysed Allylic Arylation  ChemRxiv 1-6. https://doi.org/10.26434/chemrxiv-2022-qfp1d
46.
Zeng Z, Zhang J, Jia M, Wu B, Cai X, Zhang X, Feng Y, Ma Y, Gao Q, Fei Z. 2022. Development of a Scalable Route with Efficient Stereoisomer Control to YZJ-1139, an Orexin Receptor Antagonist. Org. Process Res. Dev. 26(2):447-457. https://doi.org/10.1021/acs.oprd.1c00457
47.
van Dijk L, Ardkhean R, Sidera M, Karabiyikoglu S, Sari Ö, Claridge TDW, Lloyd-Jones GC, Paton RS, Fletcher SP. Mechanistic investigation of Rh(i)-catalysed asymmetric Suzuki–Miyaura coupling with racemic allyl halides. Nat Catal. 4(4):284-292. https://doi.org/10.1038/s41929-021-00589-y
48.
Frantz DE, Singleton DA, Snyder JP. 1997. 13C Kinetic Isotope Effects for the Addition of Lithium Dibutylcuprate to Cyclohexenone. Reductive Elimination Is Rate-Determining. J. Am. Chem. Soc. 119(14):3383-3384. https://doi.org/10.1021/ja9636348
49.
Singleton DA, Thomas AA. 1995. High-Precision Simultaneous Determination of Multiple Small Kinetic Isotope Effects at Natural Abundance. J. Am. Chem. Soc. 117(36):9357-9358. https://doi.org/10.1021/ja00141a030
50.
Wang D, Dong B, Wang Y, Qian J, Zhu J, Zhao Y, Shi Z. Rhodium-catalysed direct hydroarylation of alkenes and alkynes with phosphines through phosphorous-assisted C−H activation. Nat Commun. 10(1): https://doi.org/10.1038/s41467-019-11420-5
51.
Phan DHT, Kou KGM, Dong VM. 2010. Enantioselective Desymmetrization of Cyclopropenes by Hydroacylation. J. Am. Chem. Soc. 132(46):16354-16355. https://doi.org/10.1021/ja107738a
52.
Rubina M, Rubin M, Gevorgyan V. 2003. Catalytic Enantioselective Hydroboration of Cyclopropenes. J. Am. Chem. Soc. 125(24):7198-7199. https://doi.org/10.1021/ja034210y
53.
Sherrill WM, Rubin M. 2008. Rhodium-Catalyzed Hydroformylation of Cyclopropenes. J. Am. Chem. Soc. 130(41):13804-13809. https://doi.org/10.1021/ja805059f
54.
Rubina M, Rubin M, Gevorgyan V. 2004. Catalytic Enantioselective Hydrostannation of Cyclopropenes. J. Am. Chem. Soc. 126(12):3688-3689. https://doi.org/10.1021/ja0496928
55.
Dian L, Marek I. 2018. Rhodium‐Catalyzed Arylation of Cyclopropenes Based on Asymmetric Direct Functionalization of Three‐Membered Carbocycles. Angew Chem Int Ed. 57(14):3682-3686. https://doi.org/10.1002/anie.201713324
56.
Wen K, Peng Y, Zeng X. Advances in the catalytic asymmetric synthesis of quaternary carbon containing cyclobutanes. Org. Chem. Front. 7(17):2576-2597. https://doi.org/10.1039/d0qo00685h
57.
Xu Y, Conner ML, Brown MK. 2015. Cyclobutane and Cyclobutene Synthesis: Catalytic Enantioselective [2+2] Cycloadditions. Angew Chem Int Ed. 54(41):11918-11928. https://doi.org/10.1002/anie.201502815
58.
Wiberg KB. 1986. The Concept of Strain in Organic Chemistry. Angew. Chem. Int. Ed. Engl. 25(4):312-322. https://doi.org/10.1002/anie.198603121
59.
Goetzke FW, Hell AML, van Dijk L, Fletcher SP. 2021. A catalytic asymmetric cross-coupling approach to the synthesis of cyclobutanes. Nat. Chem. 13(9):880-886. https://doi.org/10.1038/s41557-021-00725-y
60.
Ellenbroek BA, Cesura AM. 2014. Antipsychotics and the Dopamine–Serotonin Connection.1-49. https://doi.org/10.1007/7355_2014_51
61.
Denisenko AV, Druzhenko T, Skalenko Y, Samoilenko M, Grygorenko OO, Zozulya S, Mykhailiuk PK. 2017. Photochemical Synthesis of 3-Azabicyclo[3.2.0]heptanes: Advanced Building Blocks for Drug Discovery. J. Org. Chem. 82(18):9627-9636. https://doi.org/10.1021/acs.joc.7b01678
62.
Steiner G, Munschauer R, Klebe G, Siggel L. 1995. Diastereoselective Synthesis of Exo-6-aryl-3-azabicyclo[3.2.0]heptane Derivatives by Intramolecular [2+2]Photocycloadditions of Diallylic Amines. Heterocycles. 40(1):319. https://doi.org/10.3987/com-94-s34
63.
Steiner G, Munschauer R, Höger T, Unger L, Teschendorf H. February 22, 2000. N-substituted 3-azabicyclo (3.2. 0) heptane derivatives useful as neuroleptics. [Internet]. U.S. Patent. Available from: https://patentimages.storage.googleapis.com/aa/fa/24/029e9712e232ab/US6028073.pdf
64.
Meyers MJ, Long SA, Pelc MJ, Wang JL, Bowen SJ, Schweitzer BA, Wilcox MV, McDonald J, Smith SE, Foltin S, et al. 2011. Discovery of novel spirocyclic inhibitors of fatty acid amide hydrolase (FAAH). Part 2. Discovery of 7-azaspiro[3.5]nonane urea PF-04862853, an orally efficacious inhibitor of fatty acid amide hydrolase (FAAH) for pain. Bioorganic & Medicinal Chemistry Letters. 21(21):6545-6553. https://doi.org/10.1016/j.bmcl.2011.08.048
65.
2012. Preparation of Cyclobutenone. Org. Synth. 89491. https://doi.org/10.15227/orgsyn.089.0491
66.
Egea‐Arrebola D, Goetzke FW, Fletcher SP. 2023. Rhodium‐Catalyzed Asymmetric Arylation of Cyclobutenone Ketals. Angew Chem Int Ed. 62(13): https://doi.org/10.1002/anie.202217381
67.
Mishra S, Karabiyikoglu S, Fletcher SP. 2023. Catalytic Enantioselective Synthesis of 3-Piperidines from Arylboronic Acids and Pyridine. J. Am. Chem. Soc. 145(26):14221-14226. https://doi.org/10.1021/jacs.3c05044
68.
Cunningham L, Portela MS, Fletcher SP. 2022. Scale-Up of a Rh-Catalyzed Asymmetric sp3–sp2 Suzuki–Miyaura-Type Reaction. Org. Process Res. Dev. 26(11):3153-3160. https://doi.org/10.1021/acs.oprd.2c00268
Autenticati per continuare

Per continuare a leggere, autenticati o crea un account.

Non hai un Account?