Passa al contenuto
Merck
  • A novel cabazitaxel-loaded polymeric micelle system with superior in vitro stability and long blood circulation time.

A novel cabazitaxel-loaded polymeric micelle system with superior in vitro stability and long blood circulation time.

Journal of biomaterials science. Polymer edition (2016-02-26)
Xiaoxiong Han, Dan Chen, Jing Sun, Jinsong Zhou, Duan Li, Feirong Gong, Yaling Shen
ABSTRACT

Cabazitaxel (CTX) is a second-generation semisynthetic taxane that demonstrates antitumor activity superior to docetaxel. However, the low aqueous solubility of CTX has hampered its use as a therapeutic agent. In this work, CTX-loaded N-t-butoxycarbonyl-L-phenylalanine end-capped monomethyl poly (ethylene glycol)-block-poly (D,L-lactide) (mPEG-PLA-Phe(Boc)/CTX) micelles were prepared to improve the solubility of CTX while retaining its superior stability before accessing the tumor site. The mPEG-PLA-Phe(Boc)/CTX micelles showed excellent stability in vitro compared with mPEG-PLA/CTX micelles. When stored at 25 °C, the mPEG-PLA/CTX micelles tended to aggregate within 1 h, whereas the mPEG-PLA-Phe(Boc)/CTX micelles were uniformly transparent even after three weeks. Dilution of mPEG-PLA/CTX micelles widened their size distribution and decreased the encapsulation efficiency, while significant change was not found in mPEG-PLA-Phe(Boc)/CTX micelles, even when diluted 1000-fold. Pharmacokinetic results in Sprague-Dawley rats indicated that, compared with Jevtana(®), intravenous administration of mPEG-PLA-Phe(Boc)/CTX micelles stably retained the CTX in plasma with 26.03-fold larger of the area under the time-concentration curve, 2.13-fold longer of the half-life, and 9.99-fold higher of the maximum concentration. In conclusion, mPEG-PLA-Phe(Boc) micelle may be a potential nanocarrier not only to improve the solubility of CTX but also to prolong the blood circulation time, which results in improved biological activity.

MATERIALI
N° Catalogo
Marchio
Descrizione del prodotto

Sigma-Aldrich
Boc-Phe-OH, ≥99.0% (T)