Passa al contenuto
Merck
  • A Flow-Cytometry-Based Approach to Facilitate Quantification, Size Estimation and Characterization of Sub-visible Particles in Protein Solutions.

A Flow-Cytometry-Based Approach to Facilitate Quantification, Size Estimation and Characterization of Sub-visible Particles in Protein Solutions.

Pharmaceutical research (2015-03-20)
Christian Lubich, Mantas Malisauskas, Thomas Prenninger, Thomas Wurz, Peter Matthiessen, Peter L Turecek, Friedrich Scheiflinger, Birgit M Reipert
ABSTRACT

Sub-visible particles were shown to facilitate unwanted immunogenicity of protein therapeutics. To understand the root cause of this phenomenon, a comprehensive analysis of these particles is required. We aimed at establishing a flow-cytometry-based technology to analyze the amount, size distribution and nature of sub-visible particles in protein solutions. We adjusted the settings of a BD FACS Canto II by tuning the forward scatter and the side scatter detectors and by using size calibration beads to facilitate the analysis of particles with sizes below 1 μM. We applied a combination of Bis-ANS (4,4'-dianilino-1,1'-binaphthyl-5,5'-disulfonic acid dipotassium salt) and DCVJ (9-(2,2-dicyanovinyl)julolidine) to identify specific characteristics of sub-visible particles. The FACS technology allows the analysis of particles between 0.75 and 10 μm in size, requiring relatively small sample volumes. Protein containing particles can be distinguished from non-protein particles and cross-β-sheet structures contained in protein particles can be identified. The FACS technology provides robust and reproducible results with respect to number, size distribution and specific characteristics of sub-visible particles between 0.75 and 10 μm in size. Our data for number and size distribution of particles is in good agreement with results obtained with the state-of-the-art technology micro-flow imaging.

MATERIALI
N° Catalogo
Marchio
Descrizione del prodotto

Sigma-Aldrich
9-(2,2-Dicyanovinyl)julolidine, BioReagent, suitable for fluorescence, ≥97.0% (HPLC)