Passa al contenuto
Merck
  • A possible role for Ca(2+)/calmodulin-dependent protein kinase IV during pancreatic acinar stimulus-secretion coupling.

A possible role for Ca(2+)/calmodulin-dependent protein kinase IV during pancreatic acinar stimulus-secretion coupling.

Biochimica et biophysica acta (2000-06-06)
H Yoshida, F Nozu, T O Lankisch, K Mitamura, C Owyang, Y Tsunoda
ABSTRACT

Ca(2+)/calmodulin-dependent protein kinases (CaMKs) are important intracellular mediators in the mediation of stimulus-secretion coupling and excitation-contraction coupling in a wide variety of cell types. We attempted to identify and characterize the functional roles of CaMK in mediating pancreatic enzyme secretion. Immunoprecipitation and immunoblotting studies using a CaMKII or CaMKIV antibody showed that rat pancreatic acini expressed both CaMKII and CaMKIV. Phosphotransferase activities of CaMKs were measured by a radioenzyme assay (REA) using autocamtide II, peptide gamma and myosin P-light chain as substrates. Although CaMKII and CaMKIV use autocamtide II as a substrate, peptide gamma is more efficiently phosphorylated by CaMKIV than by CaMKII. Intact acini were stimulated with cholecystokinin (CCK)-8, carbachol (CCh) and the high-affinity CCK-A receptor agonist, CCK-OPE, and the cell lysates were used for REA. CCK-8, CCh and CCK-OPE caused a concentration-dependent increase in CaMKs activities. When autocamtide II was used, maximal increases were 1.5-1.8-fold over basal (20.2+/-2.0 pmol/min/mg protein), with peaks occurring at 20 min after cell stimulation. In separate studies that used peptide gamma, CCK-8, CCh and CCK-OPE dose-dependently increased CaMKIV activities. Maximal increases were 1.5-2.4-fold over basal (30.7+/-3. 2 pmol/min/mg protein) with peaks occurring at 20 min after cell stimulation. Peak increases after cell stimulation induced by peptide gamma were 1.8-2.8-fold higher than those induced by autocamtide II. CCK-8, CCh and CCK-OPE also significantly increased phosphotransferase activities of myosin light chain kinase (MLCK) substrate (basal: 4.4+/-0.7 pmol/min/mg protein). However, maximal increases induced by MLCK substrate were less than 10% of those occurring in peptide gamma. Characteristics of the phosphotransferase activity were also different between autocamtide II and peptide gamma. When autocamtide II was used, elimination of medium Ca(2+) in either cell lysates or intact cells resulted in a significant decrease in the activity, whereas it had no or little effect when peptide gamma was used. This suggests that Ca(2+) influx from the extracellular space is not fully required for CaMKIV activity and Ca(2+) is not a prerequisite for phosphotransferase activity once CaMKIV is activated by either intracellular Ca(2+) release or intracellular Ca(2+) oscillations. The specific CaMKII inhibitor KN-62 (50 microM) had no effect on the CaMKIV activity and pancreatic enzyme secretion elicited by CCK-8, CCh and CCK-OPE. The specific MLCK inhibitor, ML-9 (10 microM), also did not inhibit CCK-8-stimulated pancreatic amylase secretion. In contrast, wide spectrum CaMK inhibitors, K-252a (1 microM) and KT5926 (3 microM), significantly inhibited CaMKIV activities and enzyme secretion evoked by secretagogues. Thus, CaMKIV appears to be an important intracellular mediator during stimulus-secretion coupling of rat pancreatic acinar cells.