Passa al contenuto
Merck
  • Solar energy assisted starch-stabilized palladium nanoparticles and their application in C-C coupling reactions.

Solar energy assisted starch-stabilized palladium nanoparticles and their application in C-C coupling reactions.

Journal of nanoscience and nanotechnology (2013-08-02)
Aniruddha B Patil, Bhalchandra M Bhanage
ABSTRACT

Present work reports a novel one step, greener protocol for the synthesis of starch-stabilized palladium nanoparticles (PdNPs) with an average particle diameter of 30-40 nm. These particles were stable and uniform in size. In present protocol, the concentrated solar energy mediated reduction of palladium chloride was achieved by using citric acid as a reducing agent and starch as a capping agent. UV-Visible spectroscopy, Transmission Electron Microscopy, Field Emission Gun-Scanning Electron Microscopy, Selected Area Electron Diffraction and Electron dispersive X-ray Spectral analysis techniques were used to characterize this starch capped PdNPs. Herein; we are reporting such combination of starch and citric acid in the synthesis of PdNPs for the first time. The catalytic activity of synthesized nanoparticles has been checked for Suzuki and Heck cross coupling reactions. The product yield was confirmed by GC. The products were confirmed using GC-MS analysis and also using GC with the help of authentic standards. Solar energy assisted starch stabilized PdNPs showed excellent activity in the C-C bond formation between aryl halides (I, Br) with phenyl boronic acid and its derivatives. In addition, the catalyst showed good activity in the Heck coupling reaction of C-C bond formation of aryl halides with aromatic alkene. The use of starch, citric acid, water and solar energy makes present protocol greener.

MATERIALI
N° Catalogo
Marchio
Descrizione del prodotto

Sigma-Aldrich
Activated charcoal, DARCO®, −100 mesh particle size, powder
Sigma-Aldrich
Activated charcoal, powder, -100 particle size (mesh), decolorizing
Sigma-Aldrich
Activated charcoal, DARCO®, 20-40 mesh particle size, granular
Sigma-Aldrich
Activated Charcoal Norit®, Norit® PK 1-3, from peat, steam activated, granular
Sigma-Aldrich
Carbon, glassy, spherical powder, 2-12 μm, 99.95% trace metals basis
Sigma-Aldrich
Activated charcoal, DARCO®, 4-12 mesh particle size, granular
Sigma-Aldrich
Activated Charcoal Norit®, Norit® GAC 1240W, from coal, for potable water processing, steam activated, granular
Sigma-Aldrich
Carbon, nanopowder, <100 nm particle size (TEM)
Sigma-Aldrich
Activated charcoal, DARCO®, 12-20 mesh, granular
Sigma-Aldrich
Palladium, powder, 99.995% trace metals basis
Supelco
Activated charcoal, powder
Supelco
Activated charcoal, puriss. p.a., powder
Sigma-Aldrich
Activated Charcoal Norit®, Norit® RB3, for gas purification, steam activated, rod
Sigma-Aldrich
Activated Charcoal Norit®, Norit® SX2, powder, from peat, multi-purpose activated charcoal, steam activated and acid washed
Sigma-Aldrich
Palladium, powder, <1 μm, ≥99.9% trace metals basis
Sigma-Aldrich
Starch from potato, Soluble
Sigma-Aldrich
Starch, puriss. p.a., from potato, reag. ISO, reag. Ph. Eur., soluble
Sigma-Aldrich
Activated charcoal, suitable for cell culture, suitable for plant cell culture
Sigma-Aldrich
Palladium, nanopowder, <25 nm particle size (TEM), ≥99.5%
Sigma-Aldrich
Starch from corn
Sigma-Aldrich
Palladium, powder or granules, 99.99% trace metals basis
Sigma-Aldrich
Palladium, foil, thickness 0.025 mm, 99.9% trace metals basis
Sigma-Aldrich
Starch from corn, Unmodified waxy corn starch of essentially pure amylopectin; contains only trace amounts of amylose.
Sigma-Aldrich
Starch from corn, practical grade
Sigma-Aldrich
Starch from potato, Powder
Sigma-Aldrich
Palladium, sponge, 99.9% trace metals basis
Sigma-Aldrich
Palladium, powder, <75 μm, 99.9% trace metals basis
Sigma-Aldrich
Starch, from potato, tested according to Ph. Eur.
Sigma-Aldrich
Starch from rice
Sigma-Aldrich
Starch from wheat, Unmodified