Passa al contenuto
Merck

Garrod's fourth inborn error of metabolism solved by the identification of mutations causing pentosuria.

Proceedings of the National Academy of Sciences of the United States of America (2011-11-02)
Sarah B Pierce, Cailyn H Spurrell, Jessica B Mandell, Ming K Lee, Sharon Zeligson, Michael S Bereman, Sunday M Stray, Siv Fokstuen, Michael J MacCoss, Ephrat Levy-Lahad, Mary-Claire King, Arno G Motulsky
ABSTRACT

Pentosuria is one of four conditions hypothesized by Archibald Garrod in 1908 to be inborn errors of metabolism. Mutations responsible for the other three conditions (albinism, alkaptonuria, and cystinuria) have been identified, but the mutations responsible for pentosuria remained unknown. Pentosuria, which affects almost exclusively individuals of Ashkenazi Jewish ancestry, is characterized by high levels of the pentose sugar L-xylulose in blood and urine and deficiency of the enzyme L-xylulose reductase. The condition is autosomal-recessive and completely clinically benign, but in the early and mid-20th century attracted attention because it was often confused with diabetes mellitus and inappropriately treated with insulin. Persons with pentosuria were identified from records of Margaret Lasker, who studied the condition in the 1930s to 1960s. In the DCXR gene encoding L-xylulose reductase, we identified two mutations, DCXR c.583ΔC and DCXR c.52(+1)G > A, each predicted to lead to loss of enzyme activity. Of nine unrelated living pentosuric subjects, six were homozygous for DCXR c.583ΔC, one was homozygous for DCXR c.52(+1)G > A, and two were compound heterozygous for the two mutant alleles. L-xylulose reductase was not detectable in protein lysates from subjects' cells and high levels of xylulose were detected in their sera, confirming the relationship between the DCXR genotypes and the pentosuric phenotype. The combined frequency of the two mutant DCXR alleles in 1,067 Ashkenazi Jewish controls was 0.0173, suggesting a pentosuria frequency of approximately one in 3,300 in this population. Haplotype analysis indicated that the DCXR c.52(+1)G > A mutation arose more recently than the DCXR c.583ΔC mutation.

MATERIALI
N° Catalogo
Marchio
Descrizione del prodotto

Sigma-Aldrich
D-Xylulose, ≥95% (HPLC), syrup
Sigma-Aldrich
Monoclonal Anti-DCXR antibody produced in mouse, clone 6A6, purified immunoglobulin, buffered aqueous solution