Passa al contenuto
Merck
  • Experimental measurements of particle deposition in three proximal lung bifurcation models with an idealized mouth-throat.

Experimental measurements of particle deposition in three proximal lung bifurcation models with an idealized mouth-throat.

Journal of aerosol medicine : the official journal of the International Society for Aerosols in Medicine (2005-12-29)
Y Zhang, Warren H Finlay
ABSTRACT

In this paper, particle deposition in three idealized proximal lung bifurcation models with an idealized mouth-throat were investigated experimentally. These bifurcation models included (1) a small symmetric bifurcation, (2) an intermediate asymmetric bifurcation, and (3) a large symmetric bifurcation. An idealized mouth-throat geometry (the "Alberta geometry") was used as the inlet to these bifurcation models. Monodisperse aerosol particles of DEHS (di-2-ethylhexyl-sebecate) oil with mass median diameters in the range of 2.5-7.5 microm were employed at steady flow rates of 30-90 L/min. Particle deposition measurements were conducted by gravimetry. The results show that particle deposition in the mouth-throat and trachea accounts for the major portion of total deposition in the entire models used, and particle deposition fraction in the proximal lung bifurcations is lower compared with that deposited in the regions upstream (the mouth-throat and the trachea). Total particle deposition efficiency increases with increasing either inertial parameter or Stokes number. Total particle deposition varies appreciably from model to model. The laryngeal jet is the key factor dominating particle deposition within the trachea. An effect of Reynolds number on particle deposition efficiency in the trachea is observed. In addition, particle deposition in the bifurcation region is influenced little by the upstream flow condition, and therefore the effect of the laryngeal jet on deposition seemingly does not propagate to the bifurcations downstream.

MATERIALI
N° Catalogo
Marchio
Descrizione del prodotto

Sigma-Aldrich
Bis(2-ethylhexyl) sebacate, ≥97.0% (GC)
Sigma-Aldrich
Bis(2-ethylhexyl) sebacate, technical grade, 90%
Supelco
Bis(2-ethylhexyl) sebacate, Selectophore, ≥97.0%