This compound is a featured product for ADME Tox research. Click here to discover more featured ADME Tox products. Learn more about bioactive small molecules for other areas of research at sigma.com/discover-bsm.
This compound was developed by Roche. To browse the list of other pharma-developed compounds and Approved Drugs/Drug Candidates, click here.
The Journal of physiology, 590(21), 5273-5297 (2012-07-11)
Anion and fluid secretion are both defective in cystic fibrosis (CF); however, the transport mechanisms are not well understood. In this study, Cl(-) and HCO(3)(-) secretion was measured using genetically matched CF transmembrane conductance regulator (CFTR)-deficient and CFTR-expressing cell lines
Journal of neuroinflammation, 19(1), 91-91 (2022-04-14)
The mechanisms underlying dysfunction of choroid plexus (ChP) blood-cerebrospinal fluid (CSF) barrier and lymphocyte invasion in neuroinflammatory responses to stroke are not well understood. In this study, we investigated whether stroke damaged the blood-CSF barrier integrity due to dysregulation of
In cortical and hippocampal neurons, cation-chloride cotransporters (CCCs) control the reversal potential (EGABA) of GABAA receptor-mediated current and voltage responses and, consequently, they modulate the efficacy of GABAergic inhibition. Two members of the CCC family, KCC2 (the major neuron-specific K-Cl
The journal of pain : official journal of the American Pain Society, 14(1), 57-65 (2012-12-04)
Stimulation of peripheral nociceptors results in increased c-Fos labeling in spinal cord regions associated with nociceptive processing. Accordingly, intracolonic capsaicin, which generates robust secondary (referred) allodynia on the abdomen of mice, also causes an increased spinal c-Fos labeling. In naïve
The Journal of physiology, 591(1), 57-65 (2012-09-26)
The expression of Na(+)-K(+)-2Cl(-) cotransporter (NKCC1) is responsible for high intracellular Cl(-) resulting in the excitatory action of GABA(A) receptor activation in the developing brain. Giant depolarizing potentials (GDPs) are spontaneous network oscillations that involve GABA(A) receptors and are thought
Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.