Skip to Content
Merck
All Photos(1)

Key Documents

808083

Sigma-Aldrich

Graphite

flakes, ≥98% carbon basis, -325 mesh particle size (50- 70%), natural

Synonym(s):

Graphite grade 3243

Sign Into View Organizational & Contract Pricing


About This Item

Empirical Formula (Hill Notation):
C
CAS Number:
Molecular Weight:
12.01
EC Number:
MDL number:
UNSPSC Code:
12352103
NACRES:
NA.23

grade

natural

Quality Level

Assay

≥98% carbon basis

form

flakes

particle size

-325 mesh (44μ, 50-70%)

mp

3652-3697 °C (lit.)

SMILES string

[C]

InChI

1S/C

InChI key

OKTJSMMVPCPJKN-UHFFFAOYSA-N

Looking for similar products? Visit Product Comparison Guide

General description

Flake graphite is a naturally occurring form of graphite that is typically found as discrete flakes ranging in size from 50-800 μm in diameter and 1-150 μm thick. This form of graphite has a high degree of crystallinity, which equates to near theoretical true density, high thermal and electric conductivity and low springback (excellent molding characteristics).

Application

  • Graphene precursor
  • Inorganic source of carbon
  • Filler
  • Thermal additive
  • Re-carburizer
  • Casting powders
  • Drilling fluids
  • Plastic additive
  • Rubber additive
  • Tint/pigment
  • Lubricant
  • Chemically resistant additive
  • EMF absorber
  • Milling and sieving
  • General inert filler-additive

Storage Class Code

11 - Combustible Solids

WGK

WGK 1

Flash Point(F)

Not applicable

Flash Point(C)

Not applicable


Choose from one of the most recent versions:

Certificates of Analysis (COA)

Lot/Batch Number

Don't see the Right Version?

If you require a particular version, you can look up a specific certificate by the Lot or Batch number.

Already Own This Product?

Find documentation for the products that you have recently purchased in the Document Library.

Visit the Document Library

Effects of different particles sizes of graphite on the engineering properties of graphites/polypropylene composites on injection molding aplication.
Iswandi, et al.
Key Engineering Materials, 109-114 (2011)
Preparation and properties of polypropylene nanocomposites reinforced with exfoliated graphene.
An, et al.
Fibers and Polymers, 13(4), 507-514 (2012)
Energy efficient thermal storage montmorillonite with phase change material containing exfoliated graphite nanoplatelets.
Jeong, et al.
Solar Energy Mat. and Solar Cells, 139, 65-70 (2015)
Reverse-Micelle-Induced Exfoliation of Graphite into Graphene Nanosheets with Assistance of Supercritical CO2.
Xu, et al.
Chemistry of Materials, 27(9), 3262-3272 (2015)
Ethan B Secor et al.
The journal of physical chemistry letters, 6(4), 620-626 (2015-08-12)
Carbon and post-carbon nanomaterials present desirable electrical, optical, chemical, and mechanical attributes for printed electronics, offering low-cost, large-area functionality on flexible substrates. In this Perspective, recent developments in carbon nanomaterial inks are highlighted. Monodisperse semiconducting single-walled carbon nanotubes compatible with

Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.

Contact Technical Service