Skip to Content
Merck
All Photos(1)

Documents

276332

Sigma-Aldrich

Rubidium

ingot, 99.6% trace metals basis

Sign Into View Organizational & Contract Pricing


About This Item

Empirical Formula (Hill Notation):
Rb
CAS Number:
Molecular Weight:
85.47
EC Number:
MDL number:
UNSPSC Code:
11101711
PubChem Substance ID:
NACRES:
NA.23

Assay

99.6% trace metals basis

form

ingot

reaction suitability

reagent type: reductant

packaging

pkg of Packaged in: Breakseal Ampule

resistivity

11.0 μΩ-cm, 20°C

impurities

0.2-0.4% Cs

bp

686 °C (lit.)

mp

38-39 °C (lit.)

density

1.53 g/mL at 25 °C (lit.)

SMILES string

[Rb]

InChI

1S/Rb

InChI key

IGLNJRXAVVLDKE-UHFFFAOYSA-N

Looking for similar products? Visit Product Comparison Guide

Related Categories

General description

Rubidium is a highly electropositive alkaline metal that can be obtained as a byproduct of refining lithium from lepidolite. It is used in photomultiplier tubes, laser cooling, atomic clock, photocell, nuclear medicine, and specialty glass.

Application

Rubidium can be used as a starting material to synthesize rubidium hydrazinidoborane (RbN2H3BH3).
It can also be used as a reducing agent to synthesize reduced polycyclic aromatic hydrocarbons.

Pictograms

FlameCorrosion

Signal Word

Danger

Hazard Statements

Hazard Classifications

Eye Dam. 1 - Skin Corr. 1B - Water-react 1

Supplementary Hazards

Storage Class Code

4.3 - Hazardous materials which set free flammable gases upon contact with water

WGK

WGK 3

Flash Point(F)

Not applicable

Flash Point(C)

Not applicable

Personal Protective Equipment

dust mask type N95 (US), Eyeshields, Gloves

Certificates of Analysis (COA)

Search for Certificates of Analysis (COA) by entering the products Lot/Batch Number. Lot and Batch Numbers can be found on a product’s label following the words ‘Lot’ or ‘Batch’.

Already Own This Product?

Find documentation for the products that you have recently purchased in the Document Library.

Visit the Document Library

Silvano Lizzit et al.
Nano letters, 12(9), 4503-4507 (2012-08-09)
High-quality, large-area epitaxial graphene can be grown on metal surfaces, but its transport properties cannot be exploited because the electrical conduction is dominated by the substrate. Here we insulate epitaxial graphene on Ru(0001) by a stepwise intercalation of silicon and
Kazuhiro Abe et al.
Proceedings of the National Academy of Sciences of the United States of America, 109(45), 18401-18406 (2012-10-24)
Gastric H(+),K(+)-ATPase is responsible for gastric acid secretion. ATP-driven H(+) uptake into the stomach is efficiently accomplished by the exchange of an equal amount of K(+), resulting in a luminal pH close to 1. Because of the limited free energy
Nan-Nan Bu et al.
Biosensors & bioelectronics, 43, 200-204 (2013-01-15)
Restricted target accessibility and surface-induced perturbation of the aptamer structure are the main limitations in single-stranded DNA aptamer-based electrochemical sensors. Chemical labeling of the aptamer with a probe at the end of aptamer is inefficient and time-consuming. In this work
Marco Papagno et al.
ACS nano, 6(10), 9299-9304 (2012-10-02)
By combining angle-resolved photoemission spectroscopy and scanning tunneling microscopy we reveal the structural and electronic properties of multilayer graphene on Ru(0001). We prove that large ethylene exposure allows the synthesis of two distinct phases of bilayer graphene with different properties.
Andrius Zukauskas et al.
Optics express, 21(2), 1395-1403 (2013-02-08)
We demonstrate that bulk Rb-doped KTiOPO₄ (RKTP) shows improved susceptibility to gray-tracking compared to flux-grown KTiOPO₄ . We show high-fidelity periodic poling of 1 mm thick RKTP with a period of 3.18 µm for second harmonic generation at 398 nm

Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.

Contact Technical Service