Cipamfylline is a PDE4 inhibitor that has been shown to cause a cellular redistribution of PDE4A4 into accretion foci, through an association with the ubiquitin scaffolding protein p62.
Cipamfylline is a PDE4 inhibitor.
Features and Benefits
This compound is a featured product for Cyclic Nucleotide research. Click here to discover more featured Cyclic Nucleotide products. Learn more about bioactive small molecules for other areas of research at sigma.com/discover-bsm.
This compound is featured on the Phosphodiesterases page of the Handbook of Receptor Classification and Signal Transduction. To browse other handbook pages, click here.
Journal of pharmaceutical sciences, 91(7), 1652-1658 (2002-07-13)
We investigated the morphologies of three polymorphs of 1,3-di(cyclopropylmethyl)-8-aminoxanthine, a compound of pharmaceutical importance. We compared the experimental morphologies with those predicted by theoretical methods. We also predicted the elastic constants of the three polymorphs. These results are used to
BRL 61063 is a novel xanthine phosphodiesterase (PDE) type IV inhibitor with selective inhibitory activity for tumor necrosis factor (TNF) alpha production. This compound inhibits TNF alpha production by activated human blood monocytes in vitro and in animal models of
Three inhibitors of calcium-dependent cyclic adenosine 3'5'-monophosphate (cAMP) dependent phosphodiesterase IV (PDE IV) were evaluated for their effects on lipopolysaccharide (LPS)-induced tumor necrosis factor (TNF) production in vitro and in vivo and for their ability to protect mice from LPS-induced
Journal of medicinal chemistry, 37(4), 476-485 (1994-02-18)
Alkylation of the selective type IV phosphodiesterase inhibitor, 8-amino-1,3-bis(cyclopropylmethyl)-xanthine (1, BRL 61063), led exclusively to the N-7 substituted derivatives 2-9, which showed varying selectivities for the PDE type IV isoenzyme relative to PDE Va. The 4-methoxybenzyl derivative 6 in particular
Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism, 17(2), 210-219 (1997-02-01)
The role of the phosphodiesterase type IV isozyme (PDE IV) in the regulation of cerebrovascular tone was investigated in the canine basilar artery in vitro and in vivo. The PDE isozymes extracted from the canine basilar artery were isolated by
Cyclic nucleotides like cAMP modulate cell function via PKA activation and ion channels.
Questions
Reviews
★★★★★ No rating value
Active Filters
Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.