Chiral plasmonic nanostructures have opened up unprecedented opportunities in optical applications. We present chirality evolution in nanoparticles focusing on the crystallographic aspects and elucidate key parameters for chiral structure formation. From a detailed understanding of chirality formation, we achieved a
Understanding chirality, or handedness, in molecules is important because of the enantioselectivity that is observed in many biochemical reactions 1 , and because of the recent development of chiral metamaterials with exceptional light-manipulating capabilities, such as polarization control2-4, a negative
Ligand-induced chirality in asymmetric CdSe/CdS core-shell nanocrystals (NCs) has been extensively applied in chiral biosensors, regioselective syntheses and assemblies, circularly polarized luminescence (CPL), and chiroptic-based devices due to their excellent physiochemical properties, such as the tunable quantum confinement effects, surface
Science (New York, N.Y.), 368(6491), 642-648 (2020-04-11)
The structural complexity of composite biomaterials and biomineralized particles arises from the hierarchical ordering of inorganic building blocks over multiple scales. Although empirical observations of complex nanoassemblies are abundant, the physicochemical mechanisms leading to their geometrical complexity are still puzzling
Questions
Reviews
★★★★★ No rating value
Active Filters
Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.