The modified-ortho pathway genes responsible for the degradation of chlorocatechols produced from 3- and 4-chlorobenzoate in Burkholderia sp. NK8 were cloned and analyzed. The five genes predicted to encode a LysR-type transcriptional regulator, chlorocatechol 1,2-dioxygenase, chloromuconate cycloisomerase, dienelactone hydrolase, and
Pseudomonas putida KT2440 is often used as a model to investigate toxicity mechanisms and adaptation to hazardous chemicals in bacteria. The objective of this paper was to test the impact of the chlorophenoxy herbicides 2,4-dichlorophenoxyacetic acid (2,4-D) and 2-(2,4-dichlorophenoxy)propanoic acid
Journal of bacteriology, 172(5), 2351-2359 (1990-05-01)
Growth of Alcaligenes eutrophus JMP134 on 2,4-dichlorophenoxyacetate requires a 2,4-dichlorphenol hydroxylase encoded by gene tfdB. Catabolism of either 2,4-dichlorophenoxyacetate or 3-chlorobenzoate involves enzymes encoded by the chlorocatechol oxidative operon consisting of tfdCDEF, which converts 3-chloro- and 3,5-dichlorocatechol to maleylacetate and
Journal of basic microbiology, 32(3), 177-184 (1992-01-01)
Effects of aromatic and nonaromatic cosubstrates on the rate of 2,4-dichlorophenol degradation by R. erythropolis 1CP were studied under growth and nongrowth conditions. Glucose and maltose were found to accelerate 2,4-dichlorophenol (initial conc. 50 mg/l) dechlorination from 11 days to
The formation of volatile compounds during abiotic degradation processes of aromatic compounds in soil has been the subject of many experimental studies but should be examined further. In this context, the present work investigates the natural formation of carbon suboxide
Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.