Dental materials : official publication of the Academy of Dental Materials, 10(4), 275-277 (1994-07-01)
This research was designed to study the effect of water or carboxylic acid monomer on the polymerization of 2-hydroxyethyl methacrylate (HEMA) in order to understand the bonding mechanism of dentin bonding systems using N-phenylglycine (NPG). The polymerization of HEMA in
Journal of dental research, 68(9), 1337-1344 (1989-09-01)
Using bond strength measurements, we investigated a number of related compounds in order to elucidate the role of the surface-active ingredient, N-phenylglycine (NPG), in experimental two-step and three-step bonding protocols resulting in adhesive bonding to dentin. All active compounds identified
Journal of medicinal chemistry, 33(3), 1052-1061 (1990-03-01)
Twenty esters of L-aspartyl-D-phenylglycine, as well as two substituted analogues, an o-fluoro and a p-hydroxy-phenylglycine ester, were prepared. The L-aspartyl-D-phenylglycine (-)-alpha- and (+)-beta-fenchyl esters had the highest sweetness potency at 1200 and 3700 times that of sucrose, respectively. The high
Journal of dental research, 70(3), 211-214 (1991-03-01)
Three structurally related substituted amino acids (N-compounds) were studied in a three-step dentin-bonding protocol. The first step of an acidic ferric oxalate solution and the third step of a surface-active comonomer were held constant throughout the study. In the second
Journal of dental research, 76(1), 602-609 (1997-01-01)
Effective composite-to-dentin bonding has been achieved by the sequential use of dilute aqueous nitric acid (HNO3) and acetone solutions of N-phenylglycine and a carboxylic acid monomer, e.g., p-PMDM. Both the HNO3 pre-treatment and the surface-initiated polymerization that results from reaction
Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.