A novel amphiphilic biodegradable cationic hyperbranched poly(ethylene glycol)-polyethylenimine-poly(gamma-benzyl L-glutamate) (PEG-PEI-PBLG) block copolymer was successfully synthesized by ring-opening polymerization (ROP) of N-carboxyanhydride of gamma-benzyl-L-glutamate (BLG-NCA) with PEG-PEI as a macroinitiator. PEG-PEI was firstly prepared by coupling of PEG and PEI using
Tissue engineering and nanotechnology have enabled engineering of nanostructured materials to meet the current challenges in bone treatment owing to rising occurrence of bone diseases, accidental damages and defects. Poly(L-lactic acid)/Poly-benzyl-L-glutamate/Collagen (PLLA/PBLG/Col) scaffolds were fabricated by electrospinning and nanohydroxyapatite (n-HA)
In the present work, the possibility to obtain PEGylated nanoparticles from two PBLG derivatives, PEG-b-poly(γ-benzyl L-glutamate), PBLG-PEG-60, and poly(γ-benzyl L-glutamate), PBLG-Bnz-50, by nanoprecipitation has been investigated. Particles were prepared not only from one polymer (PBLG-PEG-60 or PBLG-Bnz-50), but also from
Journal of materials science. Materials in medicine, 22(4), 853-863 (2011-03-05)
Recently, many efforts have been devoted to investigating the application of functionalized micelles as targeted drug delivery carriers. In this study, glycyrrhetinic acid (GA, a liver targeting ligand) modified poly(ethylene glycol)-b-poly(γ-benzyl L-glutamate) micelles were prepared and evaluated as a potential
Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.