Skip to Content
Merck
All Photos(2)

Key Documents

F5152

Sigma-Aldrich

D-Fructose Dehydrogenase from Gluconobacter industrius

lyophilized powder, 400-1,200 units/mg protein

Synonym(s):

D-Fructose:(acceptor) 5-oxidoreductase

Sign Into View Organizational & Contract Pricing


About This Item

CAS Number:
Enzyme Commission number:
MDL number:
UNSPSC Code:
12352204
NACRES:
NA.54
Pricing and availability is not currently available.

form

lyophilized powder

Quality Level

specific activity

400-1,200 units/mg protein

mol wt

140 kDa

composition

Protein, ≤10% Lowry

shipped in

wet ice

storage temp.

−20°C

Looking for similar products? Visit Product Comparison Guide

Application

D-fructose dehydrogenase is used as a biosensor to detect the presence of D-fructose.
Fructose dehydrogenase (FDH) is used in a number of basic research projects to examine the electrochemical properties of enzyme-catalyzed electrode reactions called bioelectrocatalysis.[1] D-fructose dehydrogenase has been used in a study that contributed towards a convenient method for measuring rare sugars, monosaccharides, for applications in the bio-industry. A direct electron transfer reaction of d-fructose dehydrogenase adsorbed on a porous carbon electrode surface has been used to describe a batch-type coulometric d-fructose biosensor.

Biochem/physiol Actions

D-fructose dehydrogenase catalyzes the oxidation of D-fructose to 5-keto-D-fructose.
Fructose dehydrogenase (FDH) is a heterotrimeric membrane-bound enzyme commonly seen in various Gluconobacter sp. especially in Gluconobacter japonicus (Gluconobacter industrius). It has a molecular mass of ca. 140 kDa, consisting of subunits I (67kDa), II (51 kDa), and III (20 kDa) and catalyzes the oxidation of D-fructose to produce 5-keto-D-fructose. The enzyme is a flavoprotein-cytochrome c complex with subunits I and II covalently bound to flavin adenine dinucleotide (FAD) and heme C as prosthetic groups, respectively.[1]

Unit Definition

One unit will convert 1.0 μmole D-fructose to 5-ketofructose per min at pH 4.5 at 37 °C.

Physical form

Lyophilized powder containing citrate-phosphate buffer salts, TRITON® X-100, and stabilizer

Storage Class Code

11 - Combustible Solids

WGK

WGK 3

Flash Point(F)

Not applicable

Flash Point(C)

Not applicable

Personal Protective Equipment

dust mask type N95 (US), Eyeshields, Gloves

Choose from one of the most recent versions:

Certificates of Analysis (COA)

Lot/Batch Number

Don't see the Right Version?

If you require a particular version, you can look up a specific certificate by the Lot or Batch number.

Already Own This Product?

Find documentation for the products that you have recently purchased in the Document Library.

Visit the Document Library

Seiya Tsujimura et al.
Analytical chemistry, 81(22), 9383-9387 (2009-11-17)
This paper describes a batch-type coulometric d-fructose biosensor based on direct electron transfer reaction of d-fructose dehydrogenase (FDH) adsorbed on a porous carbon electrode surface. The adsorbed-FDH electrodes catalyzed the electrochemical two-electron oxidation of d-fructose to 5-keto-d-fructose without a mediator.
Determination of seminal fructose using D-fructose dehydrogenase.
K Nakashima et al.
Clinica chimica acta; international journal of clinical chemistry, 151(3), 307-310 (1985-10-15)
Kadir Damar et al.
Talanta, 87, 67-73 (2011-11-22)
An electrochemical biosensor for detection of fructose in food samples was developed by immobilization of fructose dehydrogenase (FDH) on cysteamine and poly(amidoamine) dendrimers (PAMAM)-modified gold electrode surface. Electrochemical analysis was carried out by using hexacyanoferrate (HCF) as a mediator and
Sharon Marx et al.
Biosensors & bioelectronics, 26(6), 2981-2986 (2011-01-05)
A new form of high surface area bioelectrode, based on nanofibers of electrospun gold with immobilized fructose dehydrogenase, was developed. The gold fibers were prepared by electroless deposition of gold nanoparticles on an electrospun poly(acrylonitrile)-HAuCl(4) fiber. The material was characterized
Shota Kawai et al.
Applied and environmental microbiology, 79(5), 1654-1660 (2013-01-01)
A heterotrimeric flavoprotein-cytochrome c complex fructose dehydrogenase (FDH) of Gluconobacter japonicus NBRC3260 catalyzes the oxidation of d-fructose to produce 5-keto-d-fructose and is used for diagnosis and basic research purposes as a direct electron transfer-type bioelectrocatalysis. The fdhSCL genes encoding the

Questions

Reviews

No rating value

Active Filters

Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.

Contact Technical Service