Skip to Content
Merck
All Photos(1)

Documents

293210

Supelco

tert-Butyl methyl ether

HPLC grade, suitable for HPLC, 99.8%

Synonym(s):

MTBE, Methyl tert-butyl ether

Sign Into View Organizational & Contract Pricing


About This Item

Linear Formula:
(CH3)3COCH3
CAS Number:
Molecular Weight:
88.15
Beilstein:
1730942
EC Number:
MDL number:
UNSPSC Code:
12190000
PubChem Substance ID:

grade

HPLC grade

vapor density

3.1 (vs air)

vapor pressure

4.05 psi ( 20 °C)

Assay

99.8%

form

liquid

autoignition temp.

705 °F

purified by

glass distillation

expl. lim.

15.1 %

technique(s)

HPLC: suitable

impurities

<0.010% water

evapn. residue

<0.0003%

refractive index

n20/D 1.369 (lit.)

bp

55-56 °C (lit.)
55-56 °C

density

0.74 g/mL at 25 °C (lit.)

λ

H2O reference

UV absorption

λ: 210 nm Amax: 1.00
λ: 230 nm Amax: 0.40
λ: 250 nm Amax: 0.10
λ: 320-400 nm Amax: 0.01

SMILES string

COC(C)(C)C

InChI

1S/C5H12O/c1-5(2,3)6-4/h1-4H3

InChI key

BZLVMXJERCGZMT-UHFFFAOYSA-N

Looking for similar products? Visit Product Comparison Guide

Pictograms

FlameExclamation mark

Signal Word

Danger

Hazard Statements

Hazard Classifications

Flam. Liq. 2 - Skin Irrit. 2

Storage Class Code

3 - Flammable liquids

WGK

WGK 1

Flash Point(F)

-18.4 °F - closed cup

Flash Point(C)

-28 °C - closed cup


Certificates of Analysis (COA)

Search for Certificates of Analysis (COA) by entering the products Lot/Batch Number. Lot and Batch Numbers can be found on a product’s label following the words ‘Lot’ or ‘Batch’.

Already Own This Product?

Find documentation for the products that you have recently purchased in the Document Library.

Visit the Document Library

Kun-Chang Huang et al.
Chemosphere, 49(4), 413-420 (2002-10-09)
The kinetics of heat-assisted persulfate oxidation of methyl tert-butyl ether (MTBE) in aqueous solutions at various pH, temperature, oxidant concentration and ionic strength levels was studied. The MTBE degradation was found to follow a pseudo-first-order decay model. The pseudo-first-order rate
R J Steffan et al.
Applied and environmental microbiology, 63(11), 4216-4222 (1997-11-15)
Several propane-oxidizing bacteria were tested for their ability to degrade gasoline oxygenates, including methyl tert-butyl ether (MTBE), ethyl tert-butyl ether (ETBE), and tert-amyl methyl ether (TAME). Both a laboratory strain and natural isolates were able to degrade each compound after
Carotenoid Extraction and Quantification from Capsicum annuum.
Richins RD, et al.
Bio-protocol, 4(19), e1256-e1256 (2014)
Sarah K Abbott et al.
Lipids, 48(3), 307-318 (2013-01-29)
We have developed a protocol suitable for high-throughput lipidomic analysis of human brain samples. The traditional Folch extraction (using chloroform and glass-glass homogenization) was compared to a high-throughput method combining methyl-tert-butyl ether (MTBE) extraction with mechanical homogenization utilizing ceramic beads.
Ceinwen A Schreiner et al.
Regulatory toxicology and pharmacology : RTP, 70(2 Suppl), S29-S34 (2014-05-24)
Micronucleus and sister chromatid exchange (SCE) tests were performed for vapor condensate of baseline gasoline (BGVC), or gasoline with oxygenates, methyl tert-butyl ether (G/MTBE), ethyl tert butyl ether (G/ETBE), t-amyl methyl ether (G/TAME), diisopropyl ether (G/DIPE), t-butyl alcohol (TBA), or

Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.

Contact Technical Service