244651
Tin(IV) oxide
−325 mesh, 99.9% trace metals basis
Synonym(s):
Stannic oxide
Sign Into View Organizational & Contract Pricing
All Photos(4)
About This Item
Recommended Products
Assay
99.9% trace metals basis
form
powder
particle size
−325 mesh
density
6.95 g/mL at 25 °C (lit.)
application(s)
battery manufacturing
SMILES string
O=[Sn]=O
InChI
1S/2O.Sn
InChI key
XOLBLPGZBRYERU-UHFFFAOYSA-N
Looking for similar products? Visit Product Comparison Guide
Related Categories
General description
Tin(IV) oxide (SnO2) is an n-type wide band gap semiconductor with high transmittance at nearIR and visible region. It is scratch resistant and chemically inert.
Application
Tin(IV) oxide has been used to prepare thin films of TiO2-doped SnO2 oxide nanocomposites.
It can be used as astarting material to prepare niobium and zinc-doped titanium-tin-oxidesolid-solution ceramics, which are applicable in the field of electronicdevices.
It can be used as astarting material to prepare niobium and zinc-doped titanium-tin-oxidesolid-solution ceramics, which are applicable in the field of electronicdevices.
Storage Class Code
11 - Combustible Solids
WGK
nwg
Flash Point(F)
Not applicable
Flash Point(C)
Not applicable
Personal Protective Equipment
dust mask type N95 (US), Eyeshields, Gloves
Certificates of Analysis (COA)
Search for Certificates of Analysis (COA) by entering the products Lot/Batch Number. Lot and Batch Numbers can be found on a product’s label following the words ‘Lot’ or ‘Batch’.
Already Own This Product?
Find documentation for the products that you have recently purchased in the Document Library.
Customers Also Viewed
Chemical communications (Cambridge, England), 49(17), 1762-1764 (2013-01-25)
ZnSn(OH)(6) and binary-component SnO(2)-ZnSn(OH)(6) were introduced as affinity probes for phosphopeptide enrichment for the first time. Two strategies, either ZnSn(OH)(6) and SnO(2) serial enrichment or binary-component SnO(2)-ZnSn(OH)(6) enrichment in a single run, were proposed to enhance multi-phosphopeptide enrichment and to
Chemical communications (Cambridge, England), 49(30), 3131-3133 (2013-03-13)
An in situ hydrothermal synthesis approach has been developed to prepare SnO2@graphene nanocomposites. The nanocomposites exhibited a high reversible sodium storage capacity of above 700 mA h g(-1) and excellent cyclability for Na-ion batteries. In particular, they also demonstrated a
ACS applied materials & interfaces, 4(11), 5742-5748 (2012-10-24)
A flexible free-standing graphene/SnO₂ nanocomposites paper (GSP) was prepared by coupling a simple filtration method and a thermal reduction together for the first time. Compared with the pure SnO₂ nanoparticles, the GSP exhibited a better cycling stability, because the graphene
Nanoscale, 5(4), 1576-1582 (2013-01-19)
We explore a hybrid material consisting of SnO(2) nanoparticles (NPs) embedded in the porous shells of carbon cages (SnO(2)-PSCC). The hybrid material exhibits improved kinetics of lithiation-delithiation and high reversible capacity, and excellent cyclic stability without capacity loss over 100
Biosensors & bioelectronics, 49, 25-31 (2013-05-28)
A sensitive amperometric acetylcholinesterase (AChE) biosensor, based on SnO2 nanoparticles (SnO2 NPs), carboxylic graphene (CGR) and nafion (NF) modified glassy carbon electrode (GCE) for the detection of methyl parathion and carbofuran has been developed. The nanocomposites of SnO2 NPs and
Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.
Contact Technical Service