Saltar al contenido
Merck

Feasibility of detecting prostate cancer by ultraperformance liquid chromatography-mass spectrometry serum metabolomics.

Journal of proteome research (2014-06-13)
Xiaoling Zang, Christina M Jones, Tran Q Long, María Eugenia Monge, Manshui Zhou, L DeEtte Walker, Roman Mezencev, Alexander Gray, John F McDonald, Facundo M Fernández
RESUMEN

Prostate cancer (PCa) is the second leading cause of cancer-related mortality in men. The prevalent diagnosis method is based on the serum prostate-specific antigen (PSA) screening test, which suffers from low specificity, overdiagnosis, and overtreatment. In this work, untargeted metabolomic profiling of age-matched serum samples from prostate cancer patients and healthy individuals was performed using ultraperformance liquid chromatography coupled to high-resolution tandem mass spectrometry (UPLC-MS/MS) and machine learning methods. A metabolite-based in vitro diagnostic multivariate index assay (IVDMIA) was developed to predict the presence of PCa in serum samples with high classification sensitivity, specificity, and accuracy. A panel of 40 metabolic spectral features was found to be differential with 92.1% sensitivity, 94.3% specificity, and 93.0% accuracy. The performance of the IVDMIA was higher than the prevalent PSA test. Within the discriminant panel, 31 metabolites were identified by MS and MS/MS, with 10 further confirmed chromatographically by standards. Numerous discriminant metabolites were mapped in the steroid hormone biosynthesis pathway. The identification of fatty acids, amino acids, lysophospholipids, and bile acids provided further insights into the metabolic alterations associated with the disease. With additional work, the results presented here show great potential toward implementation in clinical settings.

MATERIALES
Referencia del producto
Marca
Descripción del producto

Sigma-Aldrich
Acetonitrilo, suitable for HPLC, gradient grade, ≥99.9%
Sigma-Aldrich
Acetona, ACS reagent, ≥99.5%
Sigma-Aldrich
Diclorometano, suitable for HPLC, ≥99.8%, contains amylene as stabilizer
Sigma-Aldrich
Ácido acético, glacial, ACS reagent, ≥99.7%
Sigma-Aldrich
Acetona, suitable for HPLC, ≥99.9%
Sigma-Aldrich
Acetonitrilo, HPLC Plus, ≥99.9%
Sigma-Aldrich
Diclorometano, contains 40-150 ppm amylene as stabilizer, ACS reagent, ≥99.5%
Sigma-Aldrich
Ácido acético, glacial, ReagentPlus®, ≥99%
Sigma-Aldrich
Acetona, HPLC Plus, for HPLC, GC, and residue analysis, ≥99.9%
Sigma-Aldrich
Diclorometano, HPLC Plus, for HPLC, GC, and residue analysis, ≥99.9%, contains 50-150 ppm amylene as stabilizer
Sigma-Aldrich
Acetonitrilo, ACS reagent, ≥99.5%
Sigma-Aldrich
Acetona, Laboratory Reagent, ≥99.5%
Sigma-Aldrich
Acetonitrilo, suitable for HPLC, gradient grade, ≥99.9%
Sigma-Aldrich
Ácido acético, glacial, ≥99.99% trace metals basis
Sigma-Aldrich
Ácido acético solution, suitable for HPLC
Sigma-Aldrich
Ácido acético, glacial, puriss., meets analytical specification of Ph. Eur., BP, USP, FCC, 99.8-100.5%
Sigma-Aldrich
Diclorometano, ACS reagent, ≥99.5%, contains 40-150 ppm amylene as stabilizer
Sigma-Aldrich
Diclorometano, puriss. p.a., ACS reagent, reag. ISO, ≥99.9% (GC)
Sigma-Aldrich
Acetona, puriss. p.a., ACS reagent, reag. ISO, reag. Ph. Eur., ≥99.5% (GC)
Sigma-Aldrich
Ácido acético, glacial, puriss. p.a., ACS reagent, reag. ISO, reag. Ph. Eur., ≥99.8%
Sigma-Aldrich
Acetona, suitable for HPLC, ≥99.8%
Sigma-Aldrich
Acetonitrilo, anhydrous, 99.8%
Sigma-Aldrich
Ácido úrico, ≥99%, crystalline
Sigma-Aldrich
Acetonitrilo, suitable for HPLC-GC, ≥99.8% (GC)
Sigma-Aldrich
Acetona, ACS reagent, ≥99.5%
Sigma-Aldrich
Diclorometano, anhydrous, ≥99.8%, contains 40-150 ppm amylene as stabilizer
Sigma-Aldrich
Decanoic acid, ≥99.5%, FCC, FG
USP
Acetona, United States Pharmacopeia (USP) Reference Standard
Sigma-Aldrich
Decanoic acid, ≥98.0%
Sigma-Aldrich
Ácido acético, for luminescence, BioUltra, ≥99.5% (GC)