Saltar al contenido
Merck

Toward prediction of alkane/water partition coefficients.

Journal of medicinal chemistry (2008-06-19)
Anita Toulmin, J Matthew Wood, Peter W Kenny
RESUMEN

Partition coefficients were measured for 47 compounds in the hexadecane/water ( P hxd) and 1-octanol/water ( P oct) systems. Some types of hydrogen bond acceptor presented by these compounds to the partitioning systems are not well represented in the literature of alkane/water partitioning. The difference, DeltalogP, between logP oct and logP hxd is a measure of the hydrogen bonding potential of a molecule and is identified as a target for predictive modeling. Minimized molecular electrostatic potential ( V min) was shown to be an effective predictor of the contribution of hydrogen bond acceptors to DeltalogP. Carbonyl oxygen atoms were found to be stronger hydrogen bond acceptors for their electrostatic potential than heteroaromatic nitrogen or oxygen bound to hypervalent sulfur or nitrogen. Values of V min calculated for hydrogen-bonded complexes were used to explore polarization effects. Predicted logP hxd and DeltalogP were shown to be more effective than logP oct for modeling brain penetration for a data set of 18 compounds.

MATERIALES
Referencia del producto
Marca
Descripción del producto

Sigma-Aldrich
Acetonitrilo, suitable for HPLC, gradient grade, ≥99.9%
Sigma-Aldrich
Acetona, ACS reagent, ≥99.5%
Sigma-Aldrich
Tetrahidrofuran, inhibitor-free, suitable for HPLC, ≥99.9%
Sigma-Aldrich
Acetato de etilo, ACS reagent, ≥99.5%
Sigma-Aldrich
Acetona, suitable for HPLC, ≥99.9%
Sigma-Aldrich
Acetonitrilo, HPLC Plus, ≥99.9%
Sigma-Aldrich
Acetona, HPLC Plus, for HPLC, GC, and residue analysis, ≥99.9%
Sigma-Aldrich
Acetato de etilo, suitable for HPLC, ≥99.7%
Sigma-Aldrich
Tetrahidrofuran, contains 250 ppm BHT as inhibitor, ACS reagent, ≥99.0%
Sigma-Aldrich
Dietiléter, anhydrous, ACS reagent, ≥99.0%, contains BHT as inhibitor
Sigma-Aldrich
Pyridine, ACS reagent, ≥99.0%
Sigma-Aldrich
Dietiléter, suitable for HPLC, ≥99.9%, inhibitor-free
Sigma-Aldrich
Dietiléter, ACS reagent, anhydrous, ≥99.0%, contains BHT as inhibitor
Sigma-Aldrich
Acetonitrilo, ACS reagent, ≥99.5%
Sigma-Aldrich
Acetona, Laboratory Reagent, ≥99.5%
Sigma-Aldrich
1,4 Dioxano, ACS reagent, ≥99.0%, contains ≤25 ppm BHT as stabilizer
Sigma-Aldrich
Acetonitrilo, suitable for HPLC, gradient grade, ≥99.9%
Sigma-Aldrich
Pyridine, suitable for HPLC, ≥99.9%
Sigma-Aldrich
Acetonitrilo, anhydrous, 99.8%
Sigma-Aldrich
Tetrahidrofuran, anhydrous, ≥99.9%, inhibitor-free
Sigma-Aldrich
Acetona, suitable for HPLC, ≥99.8%
Sigma-Aldrich
1,4 Dioxano, ACS reagent, ≥99.0%
Sigma-Aldrich
Anisole, ReagentPlus®, 99%
Sigma-Aldrich
Acetona, puriss. p.a., ACS reagent, reag. ISO, reag. Ph. Eur., ≥99.5% (GC)
Sigma-Aldrich
Pyridine, ReagentPlus®, ≥99%
Sigma-Aldrich
1,4 Dioxano, suitable for HPLC, ≥99.5%
Sigma-Aldrich
Acetato de etilo, suitable for HPLC, ≥99.8%
Sigma-Aldrich
Tetrahidrofuran, anhydrous, contains 250 ppm BHT as inhibitor, ≥99.9%
Sigma-Aldrich
Acetato de etilo, puriss. p.a., ACS reagent, reag. ISO, reag. Ph. Eur., ≥99.5% (GC)
Sigma-Aldrich
Tetrahidrofuran, ReagentPlus®, ≥99.0%, contains 250 ppm BHT as inhibitor