Saltar al contenido
Merck

Wiskott-Aldrich syndrome protein restricts cGAS/STING activation by dsDNA immune complexes.

JCI insight (2020-07-30)
Giulia Maria Piperno, Asma Naseem, Giulia Silvestrelli, Roberto Amadio, Nicoletta Caronni, Karla Evelia Cervantes-Luevano, Nalan Liv, Judith Klumperman, Andrea Colliva, Hashim Ali, Francesca Graziano, Philippe Benaroch, Hans Haecker, Richard N Hanna, Federica Benvenuti
RESUMEN

Dysregulated sensing of self-nucleic acid is a leading cause of autoimmunity in multifactorial and monogenic diseases. Mutations in Wiskott-Aldrich syndrome protein (WASp), a key regulator of cytoskeletal dynamics in immune cells, cause autoimmune manifestations and increased production of type I IFNs by innate cells. Here we show that immune complexes of self-DNA and autoantibodies (DNA-ICs) contribute to elevated IFN levels via activation of the cGAS/STING pathway of cytosolic sensing. Mechanistically, lack of endosomal F-actin nucleation by WASp caused a delay in endolysosomal maturation and prolonged the transit time of ingested DNA-ICs. Stalling in maturation-defective organelles facilitated leakage of DNA-ICs into the cytosol, promoting activation of the TBK1/STING pathway. Genetic deletion of STING and STING and cGAS chemical inhibitors abolished IFN production and rescued systemic activation of IFN-stimulated genes in vivo. These data unveil the contribution of cytosolic self-nucleic acid sensing in WAS and underscore the importance of WASp-mediated endosomal actin remodeling in preventing innate activation.

MATERIALES
Referencia del producto
Marca
Descripción del producto

Sigma-Aldrich
DMXAA, ≥98% (HPLC), solid
Sigma-Aldrich
C-178, ≥98% (HPLC)