Saltar al contenido
Merck

906913

Sigma-Aldrich

TissueFab® bioink 

Alg(Gel)ma -Vis/525 nm

Sinónimos:

Alginate, Bioink, GelMA-Alginate bioink, Gelatin methacrylamide, Gelatin methacrylate, Gelatin methacryloyl, Sodium alginate

Iniciar sesiónpara Ver la Fijación de precios por contrato y de la organización


About This Item

UNSPSC Code:
12352201
NACRES:
NA.23

description

suitable for 3D bioprinting applications

form

gel form (Viscous)

impurities

≤5 CFU/g Bioburden (Fungal)
≤5 CFU/g Bioburden (Total Aerobic)

color

colorless to pale yellow

pH

6.5-7.5

application(s)

3D bioprinting

storage temp.

2-8°C

¿Está buscando productos similares? Visita Guía de comparación de productos

General description

3D bioprinting is the printing of biocompatible materials, cells, growth factors, and the other supporting materials necessary to yield functional complex living tissues. 3D bioprinting has been used to generate several different types of tissue such as skin, bone, vascular grafts, and cartilage structures. Based upon the desired properties, different materials and formulations can be used to generate both hard and soft tissues. While several 3D printing methods exist, due to the sensitivity of the materials used, extrusion-based methods with bioinks are most commonly employed.

Application

Gelatin methacrylate-Alginate bioink formulation is derived from natural polymers - gelatin and alginate. Gelatin contains bioactive peptide sequences similar to native extracellular matrix which promotes integrin mediated cell adhesion and MMP sensitive enzymatic degradation which are essential for cellular functions such as migration, proliferation and differentiation. Alginate is a natural polysaccharide widely used in tissue engineering, serves as a viscosity enhancer in the bioink formulation. TissueFab®- GelAlg-Vis bioink formulation is optimized for 3D bioprinting of tissues and constructs using any extrusion based 3D bioprinter. TissueFab® - GelAlg-Vis bioink formulation can be used to bioprint cell-laden hydrogels in desired shape and can be crosslinked by a combination of chemical crosslinking and visible light mediated photocrosslinking for further culture and maturation of cells for tissue engineering and regenerative medicine applications. Gelatin methacrylate bioinks have been used for 3D bioprinting with high printing resolution, shape fidelity and cell viability. Gelatin methacrylate based bioinks have been used to bioprint osteogenic, chondrogenic, hepatic, adipogenic, vasculogenic, epithelial, endothelial, cardiac valve, skin, tumor and other tissues and constructs. Gelatin and alginate containing bioinks have been used for bioprinting of 3D constructs with various cell types including human mesenchymal stem cells (hMSC), embryonic stem cells (ESC), human umbilical vein endothelial cells (HUVEC), fibroblasts, cancer cells etc.

Packaging

10 mL in glass bottle

Legal Information

TISSUEFAB is a registered trademark of Merck KGaA, Darmstadt, Germany

pictograms

Health hazardExclamation mark

signalword

Warning

hcodes

Hazard Classifications

Skin Sens. 1 - STOT RE 2

target_organs

Liver,Upper respiratory tract

Storage Class

10 - Combustible liquids

wgk_germany

WGK 3

flash_point_f

Not applicable

flash_point_c

Not applicable


Elija entre una de las versiones más recientes:

Certificados de análisis (COA)

Lot/Batch Number

¿No ve la versión correcta?

Si necesita una versión concreta, puede buscar un certificado específico por el número de lote.

¿Ya tiene este producto?

Encuentre la documentación para los productos que ha comprado recientemente en la Biblioteca de documentos.

Visite la Librería de documentos

Liliang Ouyang et al.
Biofabrication, 8(3), 035020-035020 (2016-09-17)
3D cell printing is an emerging technology for fabricating complex cell-laden constructs with precise and pre-designed geometry, structure and composition to overcome the limitations of 2D cell culture and conventional tissue engineering scaffold technology. This technology enables spatial manipulation of
Y Shi et al.
Biomedical materials (Bristol, England), 13(3), 035008-035008 (2018-01-09)
Three-dimensional bioprinting is an emerging technology for fabricating living 3D constructs, and it has shown great promise in tissue engineering. Bioinks are scaffold materials mixed with cells used by 3D bioprinting to form a required cell-laden structure. In this paper
B Duan et al.
Acta biomaterialia, 10(5), 1836-1846 (2013-12-18)
Tissue engineering has great potential to provide a functional de novo living valve replacement, capable of integration with host tissue and growth. Among various valve conduit fabrication techniques, three-dimensional (3-D) bioprinting enables deposition of cells and hydrogels into 3-D constructs
Wanjun Liu et al.
Biofabrication, 10(2), 024102-024102 (2017-11-28)
Bioinks with shear-thinning/rapid solidification properties and strong mechanics are usually needed for the bioprinting of three-dimensional (3D) cell-laden constructs. As such, it remains challenging to generate soft constructs from bioinks at low concentrations that are favorable for cellular activities. Herein
Wanjun Liu et al.
Advanced healthcare materials, 6(12) (2017-05-04)
Bioprinting is an emerging technique for the fabrication of 3D cell-laden constructs. However, the progress for generating a 3D complex physiological microenvironment has been hampered by a lack of advanced cell-responsive bioinks that enable bioprinting with high structural fidelity, particularly

Artículos

Bioinks enable 3D bioprinting of tissue constructs for drug screening and transplantation; select suitable bioinks for specific tissue engineering.

Bioinks enable 3D bioprinting of tissue constructs for drug screening and transplantation; select suitable bioinks for specific tissue engineering.

Bioinks enable 3D bioprinting of tissue constructs for drug screening and transplantation; select suitable bioinks for specific tissue engineering.

Bioinks enable 3D bioprinting of tissue constructs for drug screening and transplantation; select suitable bioinks for specific tissue engineering.

Ver todo

Protocolos

Frequently asked questions (FAQs) for KAPA SYBR® FAST One-Step qRT-PCR Kits.

Frequently asked questions (FAQs) for KAPA SYBR® FAST One-Step qRT-PCR Kits.

Nuestro equipo de científicos tiene experiencia en todas las áreas de investigación: Ciencias de la vida, Ciencia de los materiales, Síntesis química, Cromatografía, Analítica y muchas otras.

Póngase en contacto con el Servicio técnico