跳转至内容
Merck

Film-Stabilizing Attributes of Polymeric Core-Shell Nanoparticles.

ACS nano (2015-07-07)
Xiao-Jing Cai, Hao-Miao Yuan, Anton Blencowe, Greg G Qiao, Jan Genzer, Richard J Spontak
摘要

Self-organization of nanoparticles into stable, molecularly thin films provides an insightful paradigm for manipulating the manner in which materials interact at nanoscale dimensions to generate unique material assemblies at macroscopic length scales. While prior studies in this vein have focused largely on examining the performance of inorganic or organic/inorganic hybrid nanoparticles (NPs), the present work examines the stabilizing attributes of fully organic core-shell microgel (CSMG) NPs composed of a cross-linked poly(ethylene glycol dimethacrylate) (PEGDMA) core and a shell of densely grafted, but relatively short-chain, polystyrene (PS) arms. Although PS homopolymer thin films measuring from a few to many nanometers in thickness, depending on the molecular weight, typically dewet rapidly from silica supports at elevated temperatures, spin-coated CSMG NP films measuring as thin as 10 nm remain stable under identical conditions for at least 72 h. Through the use of self-assembled monolayers (SAMs) to alter the surface of a flat silica-based support, we demonstrate that such stabilization is not attributable to hydrogen bonding between the acrylic core and silica. We also document that thin NP films consisting of three or less layers (10 nm) and deposited onto SAMs can be fully dissolved even after extensive thermal treatment, whereas slightly thicker films (40 nm) on Si wafer become only partially soluble during solvent rinsing with and without sonication. Taken together, these observations indicate that the present CSMG NP films are stabilized primarily by multidirectional penetration of relatively short, unentangled NP arms caused by NP layering, rather than by chain entanglement as in linear homopolymer thin films. This nanoscale "velcro"-like mechanism permits such NP films, unlike their homopolymer counterparts of comparable chain length and thickness, to remain intact as stable, free-floating sheets on water, and thus provides a viable alternative to ultrathin organic coating strategies.

材料
货号
品牌
产品描述

Sigma-Aldrich
四氢呋喃, anhydrous, ≥99.9%, inhibitor-free
Sigma-Aldrich
四氢呋喃, anhydrous, contains 250 ppm BHT as inhibitor, ≥99.9%
Sigma-Aldrich
甲苯, anhydrous, 99.8%
Sigma-Aldrich
甲醇, anhydrous, 99.8%
Sigma-Aldrich
4-甲氧基苯酚, ReagentPlus®, 99%
Sigma-Aldrich
乙二醇二甲基丙烯酸酯, 98%, contains 90-110 ppm monomethyl ether hydroquinone as inhibitor
Sigma-Aldrich
甲醇, JIS special grade, ≥99.8%
Sigma-Aldrich
苯乙烯, ReagentPlus®, contains 4-tert-butylcatechol as stabilizer, ≥99%
Sigma-Aldrich
溴化铜(II), 99%
Sigma-Aldrich
N,N,N′,N′′,N′′-五甲基二乙烯三胺, 99%
Sigma-Aldrich
对苯二酚, ReagentPlus®, ≥99%
Sigma-Aldrich
苯甲醚, anhydrous, 99.7%
Sigma-Aldrich
甲醇, SAJ first grade, ≥99.5%
Sigma-Aldrich
对苯二酚, ReagentPlus®, 99%
Sigma-Aldrich
(1-溴乙基)苯, 97%
Sigma-Aldrich
四氢呋喃, suitable for HPLC, contains no stabilizer
Sigma-Aldrich
四氢呋喃, SAJ first grade, ≥99.0%
Sigma-Aldrich
苯甲醚, ≥99%, FCC, FG
Sigma-Aldrich
甲苯, SAJ first grade, ≥99.0%
Sigma-Aldrich
甲醇, SAJ special grade
Sigma-Aldrich
(N,N-二甲氨基丙基)三甲氧基硅烷, 96%
Sigma-Aldrich
甲醇, suitable for HPLC
Sigma-Aldrich
四氢呋喃, suitable for HPLC, ≥99.9%, inhibitor-free
Sigma-Aldrich
甲苯, JIS special grade, ≥99.5%
Sigma-Aldrich
四氢呋喃, JIS special grade, ≥99.5%
Sigma-Aldrich
溴化铜(II), 99.999% trace metals basis
Sigma-Aldrich
甲醇, suitable for HPLC, gradient grade, 99.93%
Sigma-Aldrich
甲醇, NMR reference standard
Supelco
甲苯, HPLC grade, 99.8%
Sigma-Aldrich
甲醇 溶液, NMR reference standard, 4% in methanol-d4 (99.8 atom % D), NMR tube size 3 mm × 8 in.