跳转至内容
Merck
  • Modulation of the peroxiredoxin system by cytokines in insulin-producing RINm5F cells: down-regulation of PRDX6 increases susceptibility of beta cells to oxidative stress.

Modulation of the peroxiredoxin system by cytokines in insulin-producing RINm5F cells: down-regulation of PRDX6 increases susceptibility of beta cells to oxidative stress.

Molecular and cellular endocrinology (2013-04-30)
Flavia M M Paula, Sandra M Ferreira, Antonio C Boschero, Kleber L A Souza
摘要

Peroxiredoxins are a family of six antioxidant enzymes (PRDX1-6), and may be an alternative system for the pancreatic beta cells to cope with oxidative stress. This study investigated whether the main diabetogenic pro-inflammatory cytokines or the anti-inflammatory cytokine IL-4 modulate PRDXs levels and putative intracellular pathways important for this process in the insulin-producing RINm5F cells. RINm5F cells expressed significant amounts of PRDX1, PRDX3 and PRDX6 enzymes. Only PRDX6 was modulated by cytokines, showing both mRNA and protein down-regulation following incubation of RINm5F cells with TNF-alpha and IFN-gamma but not with IL-1beta. Separately IFN-gamma or TNF-alpha decreased PRDX6 protein but not mRNA levels. The blockage of the JNK signalling and of the calpains and proteasome proteolysis systems restored PRDX6 protein levels. IL-4 alone did not modulate PRDXs levels. However, pre/co-incubation with IL-4 substantially prevented the decrease in PRDX6 induced by pro-inflammatory cytokines. Knockdown of PRDX6 increased susceptibility of RINm5F cells to the deleterious effects of pro-inflammatory cytokines and to oxidative stress. These results show that, from the PRDXs significantly expressed in RINm5F cells, only PRDX6 is modulated by the diabetogenic cytokines IFN-gamma and TNF-alpha. This PRDX6 down-regulation depends on the calpain and proteasome systems and JNK signalling. PRDX6 is an important enzyme for protection against oxidative stress and the interaction between pro- and anti-inflammatory cytokines might be important to determine the antioxidant capacity of the cells.