跳转至内容
Merck
  • Tetrahydroxy stilbene glucoside alleviates palmitic acid-induced inflammation and apoptosis in cardiomyocytes by regulating miR-129-3p/Smad3 signaling.

Tetrahydroxy stilbene glucoside alleviates palmitic acid-induced inflammation and apoptosis in cardiomyocytes by regulating miR-129-3p/Smad3 signaling.

Cellular & molecular biology letters (2019-03-02)
Yong Zou, Min Kong
摘要

Tetrahydroxy stilbene glucoside (TSG) has been reported to exert a cytoprotective effect against various toxicants. However, the function and mechanism of TSG in palmitic acid (PA)-induced inflammation and apoptosis in cardiomyocytes are still unknown. The present study was designed to investigate the post-transcriptional mechanism in TSG-treated cardiomyocytes' inflammation and apoptosis induced by PA. The mRNA and protein levels were assayed by reverse transcription-quantitative polymerase chain reaction (RT-qPCR) and western blotting, respectively. The targeted genes were predicted by a bioinformatics algorithm and confirmed by a dual luciferase reporter assay. Cell proliferation was analyzed by CCK-8 assay. Annexin V-fluorescein isothiocyanate/polyimide (annexin V-FITC/PI) staining was used to evaluate apoptosis using flow cytometry. TSG restricted the detrimental effects, including the activated inflammatory response and apoptosis, of PA in cardiomyocytes, as well as the up-regulation of miR-129-3p and down-regulation of p-Smad3 expression. In addition, bioinformatics and experimental analysis suggested that Smad3 was a direct target of miR-129-3p, which could inhibit or enhance the expression of p-Smad by transfection with miR-129-3p mimics or inhibitors, respectively. Furthermore, our results demonstrated that overexpression of Smad3 reversed the inhibition of inflammation and apoptosis by overexpression of miR-129-3p in PA-stimulated cardiomyocytes. TSG targeted to miR-129-3p/Smad3 signaling inhibited PA-induced inflammation and apoptosis in cardiomyocytes.

材料
货号
品牌
产品描述

Sigma-Aldrich
硫酸多粘菌素 B, Polymyxin B Sulfate, CAS 1405-20-5, is an antibiotic that is effective against Gram-positive bacteria. Inhibits phospholipid-sensitive Ca2+-dependent protein kinases.