跳转至内容
Merck
  • A Molecular Profile of the Endothelial Cell Response to Ionizing Radiation.

A Molecular Profile of the Endothelial Cell Response to Ionizing Radiation.

Radiation research (2016-07-09)
Heather A Himburg, Joshua Sasine, Xiao Yan, Jenny Kan, Holly Dressman, John P Chute
摘要

Ionizing radiation exposure can cause acute radiation sickness (ARS) by damaging the hematopoietic compartment. Radiation damages quiescent hematopoietic stem cells (HSCs) and proliferating hematopoietic cells, resulting in neutropenia, thrombocytopenia and increased risk for long-term hematopoietic dysfunction and myelodysplasia. While some aspects of the hematopoietic response to radiation injury are intrinsic to hematopoietic cells, the recovery of the HSC pool and overall hematopoiesis is also dependent on signals from bone marrow endothelial cells (BM ECs) within the HSC vascular niche. The precise mechanisms through which BM ECs regulate HSC regeneration remain unclear. Characterization of the altered EC gene expression that occurs in response to radiation could provide a roadmap to the discovery of EC-derived mechanisms that regulate hematopoietic regeneration. Here, we show that 5 Gy total-body irradiation substantially alters the expression of numerous genes in BM ECs within 24 h and this molecular response largely resolves by day 14 postirradiation. Several unique and nonannotated genes, which encode secreted proteins were upregulated and downregulated in ECs in response to radiation. These results highlight the complexity of the molecular response of BM ECs to ionizing radiation and identify several candidate mechanisms that should be prioritized for functional analysis in models of hematopoietic injury and regeneration.

材料
货号
品牌
产品描述

Millipore
MILLIPLEX®小鼠细胞因子/趋化因子磁珠试剂盒 - 预混32重 - 免疫学多重分析, Simultaneously analyze multiple cytokine and chemokine biomarkers with Bead-Based Multiplex Assays using the Luminex technology, in mouse serum, plasma and cell culture samples.
Millipore
MILLIPLEX®小鼠血管生成/生长因子磁珠组套 - 癌症多重检测试剂盒, for the simultaneous quantification of multiple analytes