跳转至内容
Merck
  • Simultaneous Induction of Glycolysis and Oxidative Phosphorylation during Activation of Hepatic Stellate Cells Reveals Novel Mitochondrial Targets to Treat Liver Fibrosis.

Simultaneous Induction of Glycolysis and Oxidative Phosphorylation during Activation of Hepatic Stellate Cells Reveals Novel Mitochondrial Targets to Treat Liver Fibrosis.

Cells (2020-11-15)
Natalia Smith-Cortinez, Karen van Eunen, Janette Heegsma, Sandra Alejandra Serna-Salas, Svenja Sydor, Lars P Bechmann, Han Moshage, Barbara M Bakker, Klaas Nico Faber
摘要

Upon liver injury, hepatic stellate cells (HSCs) transdifferentiate to migratory, proliferative and extracellular matrix-producing myofibroblasts (e.g., activated HSCs; aHSCs) causing liver fibrosis. HSC activation is associated with increased glycolysis and glutaminolysis. Here, we compared the contribution of glycolysis, glutaminolysis and mitochondrial oxidative phosphorylation (OXPHOS) in rat and human HSC activation. Basal levels of glycolysis (extracellular acidification rate ~3-fold higher) and particularly mitochondrial respiration (oxygen consumption rate ~5-fold higher) were significantly increased in rat aHSCs, when compared to quiescent rat HSC. This was accompanied by extensive mitochondrial fusion in rat and human aHSCs, which occurred without increasing mitochondrial DNA content and electron transport chain (ETC) components. Inhibition of glycolysis (by 2-deoxy-D-glucose) and glutaminolysis (by CB-839) did not inhibit rat aHSC proliferation, but did reduce Acta2 (encoding α-SMA) expression slightly. In contrast, inhibiting mitochondrial OXPHOS (by rotenone) significantly suppressed rat aHSC proliferation, as well as Col1a1 and Acta2 expression. Other than that observed for rat aHSCs, human aHSC proliferation and expression of fibrosis markers were significantly suppressed by inhibiting either glycolysis, glutaminolysis or mitochondrial OXPHOS (by metformin). Activation of HSCs is marked by simultaneous induction of glycolysis and mitochondrial metabolism, extending the possibilities to suppress hepatic fibrogenesis by interfering with HSC metabolism.

材料
货号
品牌
产品描述

Sigma-Aldrich
D-2-脱氧葡萄糖, ≥98% (GC), crystalline
Sigma-Aldrich
鱼藤酮, ≥95%
Sigma-Aldrich
抗肌动蛋白,α-平滑肌抗体,小鼠单克隆, clone 1A4, purified from hybridoma cell culture
Sigma-Aldrich
LX-2 人肝星状细胞系, a highly suitable model of human hepatic fibrosis
Supelco
Supelcarb HC 烃类捕集阱, volume 750 cc, 1/2 in. fitting