跳转至内容
Merck
  • Nanoscale Effect of Zirconia Filler Surface on Mechanical Tensile Strength of Polymer Composites.

Nanoscale Effect of Zirconia Filler Surface on Mechanical Tensile Strength of Polymer Composites.

Nanoscale research letters (2020-03-04)
Kai Kan, Daiki Moritoh, Yuri Matsumoto, Kanami Masuda, Masataka Ohtani, Kazuya Kobiro
摘要

A characteristic effect of a nano-concave-convex structure of a zirconia nanoparticle assembly with an inherent porous structure and huge surface area enabled us to introduce systematic surface modification by thermal treatment to smooth surface and polymer impregnation to mask the nano-concave-convex structure of the zirconia nanoparticle assembly. A polymer composite prepared from 30 wt% poly(N-isopropylacrylamide) containing 0.02 wt% zirconia nanoparticle assembly with the inherent nano-concave-convex surface structure showed the highest tensile strength in mechanical tensile testing. However, both sintered zirconia nanoparticle assembly with smooth surface and zirconia nanoparticle assemblies with polymer masked surface showed lower strength with longer elongation at break in mechanical tensile testing.

材料
货号
品牌
产品描述

Sigma-Aldrich
1-羟基环己基苯基酮, 99%
Sigma-Aldrich
甲基丙烯酸苄基酯, 96%, contains monomethyl ether hydroquinone as inhibitor
Sigma-Aldrich
环己基甲基丙烯酸酯, ≥97%, contains ~60 ppm monomethyl ether hydroquinone as inhibitor