跳转至内容
Merck
  • T-cadherin upregulation correlates with cell-cycle progression and promotes proliferation of vascular cells.

T-cadherin upregulation correlates with cell-cycle progression and promotes proliferation of vascular cells.

Cardiovascular research (2004-09-15)
Danila Ivanov, Maria Philippova, Roy Allenspach, Paul Erne, Thérèse Resink
摘要

In vascular tissue, T-cadherin (T-cad) levels correlate with the progression of atherosclerosis, restenosis and tumour neovascularization. This study investigates whether T-cad influences proliferation of vascular cells. Cultures of human umbilical vein endothelial cells (HUVEC) and rat and human aortic smooth muscle cells (rSMC, hSMC) were used. T-cad was overexpressed in HUVEC and hSMC using an adenoviral expression system. In cultures released from G(1)/G(0) synchrony parallel immunoblot analysis of T-cad and cell cycle phase specific markers (p27(Kip1), cyclin D1, E2F1, PCNA, cyclin B) showed increased T-cad protein levels subsequent to entry into early S-phase with sustained elevation through S-and M-phases. T-cad was increased in G(2)/M-phase (colchicine) synchronized cultures. In FACS-sorted cell populations, expression of T-cad in S-and G(2)/M-phase was higher than G(1)/G(0)-phase. Compared with empty-and LacZ-vector infected controls, HUVEC and hSMC overexpressing T-cad exhibited increased proliferation as assessed in enumeration and DNA synthesis assays. Additionally, following release from G(1)/G(0) synchrony, HUVEC and hSMC overexpressing T-cad enter S-phase more rapidly. Flow cytometry after BrdU/propidium labelling confirmed increased cell cycle progression in T-cad overexpressing cells. In vascular cells, T-cad is dynamically regulated during the cell cycle and its expression functions in the promotion of proliferation. T-cad may facilitate progression of proliferative vascular disorders such as atherosclerosis, restenosis and tumour angiogenesis.

材料
货号
品牌
产品描述

Sigma-Aldrich
单克隆抗-肌动蛋白,α-平滑肌, clone 1A4, ascites fluid