跳转至内容
Merck
  • Incorporation of ORF2 from Porcine Circovirus Type 2(PCV2) into genetically encoded nanoparticles as a novel vaccine using a self-aggregating peptide.

Incorporation of ORF2 from Porcine Circovirus Type 2(PCV2) into genetically encoded nanoparticles as a novel vaccine using a self-aggregating peptide.

Vaccine (2019-03-03)
Jesús Zepeda-Cervantes, Adolfo Cruz-Reséndiz, Alicia Sampieri, Rosalba Carreón-Nápoles, José Iván Sánchez-Betancourt, Luis Vaca
摘要

Porcine Circovirus Type 2 (PCV2) is one of the most important pathogens in pigs around the world. PCV2 is a non-enveloped virus and its capsid is formed by a single protein known as open reading frame 2 (ORF2). The aim of this study was to evaluate the antigenicity and immunogenicity of genetically-encoded protein nanoparticles (NPs) containing ORF2 from PCV2 fused to the first 110 amino acids of the N-terminus of polyhedrin from the insect virus Autographa californica nucleopolyhedrovirus (PH(1 -1 1 0)). Our group has previously described that some polyhedrin fragments self-aggregate forming polyhedra-like particles. We identified a self-aggregating signal within the first 110 amino acids from polyhedrin (PH(1 -1 1 0)). Fusing the ORF2 from PCV2 to the carboxyl terminus from PH(1 -1 1 0) results in the formation of NPs which incorporate the antigen of interest. Using this system we synthesized NPs containing PH(1 -1 1 0) fused to ORF2 (PH(1 -1 1 0)PCV2) and purify them to immunize pigs and evaluate the humoral immune response generated by these NPs comparing them to a commercially available vaccine. Pigs immunized with PH(1 -1 1 0)PCV2 NPs produced antibodies against ORF2 from PCV2 as indicated by western blot and ELISA analysis. Antibodies obtained with PH(1 -1 1 0)PCV2 NPs were comparable to those obtained using a commercial PCV2 vaccine. These antibodies neutralized the infection of a recombinant PCV2 expressing the green fluorescent protein (GFP). These results together suggest that the self-aggregating peptide PH(1 -1 1 0) can be used for the synthesis of subunit vaccines against PCV2.