Neurogastroenterology and motility : the official journal of the European Gastrointestinal Motility Society, 23(5), e181-e190 (2011-03-19)
γ-Aminobutyric acid (GABA) acts on specific neural receptors [A, B and C(Aρ)] to modulate gastrointestinal function. The precise role of GABA receptor activation in the regulation of presynaptic nitric oxide (NO) synthesis in nerve terminals is unknown. Rat ileal nerve
Retinitis pigmentosa (RP) is a progressive retinal degenerative disease that causes deterioration of rod and cone photoreceptors. A well-studied animal model of RP is the transgenic P23H rat, which carries a mutation in the rhodopsin gene. Previously, I reported that
Trends in pharmacological sciences, 22(3), 121-132 (2001-03-10)
In less than a decade our knowledge of the GABA(C) receptor, a new type of Cl(-)-permeable ionotropic GABA receptor, has greatly increased based on studies of both native and recombinant receptors. Careful comparison of properties of native and recombinant receptors
In the present study, we evaluated TACA (a potent agonist of GABA(A) and GABA(C) receptors) in the electroconvulsive threshold test in mice. Surprisingly, TACA (at 15 and 25 mg/kg) significantly decreased the threshold. The highest ineffective dose of TACA was
British journal of pharmacology, 122(8), 1551-1560 (1998-01-10)
1. gamma-Aminobutyric acid (GABA) and trans-4-aminocrotonic acid (TACA) have been shown to activate GABAC receptors. In this study, a range of C2, C3, C4 and N-substituted GABA and TACA analogues were examined for activity at GABAC receptors. 2. The effects
Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.