Skip to Content
Merck
All Photos(1)

Key Documents

SML0971

Sigma-Aldrich

Ki 16425

≥98% (HPLC)

Synonym(s):

3-[[[4-[4-[[[1-(2-Chlorophenyl)ethoxy]carbonyl]amino]-3-methyl-5-isoxazolyl]phenyl]methyl]thio]-propanoic acid, Ki16425

Sign Into View Organizational & Contract Pricing


About This Item

Empirical Formula (Hill Notation):
C23H23ClN2O5S
CAS Number:
Molecular Weight:
474.96
UNSPSC Code:
12352200
NACRES:
NA.77

Quality Level

Assay

≥98% (HPLC)

form

powder

color

white to beige

solubility

DMSO: 20 mg/mL, clear

storage temp.

−20°C

InChI

1S/C23H23ClN2O5S/c1-14-21(25-23(29)30-15(2)18-5-3-4-6-19(18)24)22(31-26-14)17-9-7-16(8-10-17)13-32-12-11-20(27)28/h3-10,15H,11-13H2,1-2H3,(H,25,29)(H,27,28)

InChI key

LLIFMNUXGDHTRO-UHFFFAOYSA-N

Application

Ki 16425 has been used as a chemical inhibitor to study the regulation of LPA (lysophosphatidic acid) on LPAR(LPA receptor) subtypes.

Biochem/physiol Actions

Ki 16425 possesses a short-lived inhibitory activity. It has been studied that Ki 16425 is effective in the inhibition of neuropathic pain‐like behaviors.
Ki16452 is a potent antagonist of the lysophosphatidic acid receptors LPA1 and LPA3, with greater than 30-fold selectivity for LPA1 over LPA2. The Ki values for LPA1 and LPA3 are 250 nM and 360 nM, respectively.

Storage Class Code

11 - Combustible Solids

WGK

WGK 3

Flash Point(F)

Not applicable

Flash Point(C)

Not applicable


Certificates of Analysis (COA)

Search for Certificates of Analysis (COA) by entering the products Lot/Batch Number. Lot and Batch Numbers can be found on a product’s label following the words ‘Lot’ or ‘Batch’.

Already Own This Product?

Find documentation for the products that you have recently purchased in the Document Library.

Visit the Document Library

Evidence for lysophosphatidic acid 1 receptor signaling in the early phase of neuropathic pain mechanisms in experiments using Ki?16425, a lysophosphatidic acid 1 receptor antagonist.
Ma L, et al.
Journal of Neurochemistry, 109(2), 603-610 (2009)
Jean-Philippe Pradère et al.
Journal of the American Society of Nephrology : JASN, 18(12), 3110-3118 (2007-11-16)
Tubulointerstitial fibrosis in chronic renal disease is strongly associated with progressive loss of renal function. We studied the potential involvement of lysophosphatidic acid (LPA), a growth factor-like phospholipid, and its receptors LPA(1-4) in the development of tubulointerstitial fibrosis (TIF). Renal
Jennifer Fransson et al.
Molecular neurobiology, 58(2), 470-482 (2020-09-26)
Multiple sclerosis (MS) is a neuroinflammatory disease whose pathogenesis remains unclear. Lysophosphatidic acid (LPA) is an endogenous phospholipid involved in multiple immune cell functions and dysregulated in MS. Its receptor LPA1 is expressed in macrophages and regulates their activation, which
Chia-Hung Chou et al.
PloS one, 10(3), e0122060-e0122060 (2015-03-31)
Lysophosphatidic acid (LPA) is a multi-function glycerophospholipid. LPA affects the proliferation of hepatocytes and stellate cells in vitro, and in a partial hepatectomy induced liver regeneration model, the circulating LPA levels and LPA receptor (LPAR) expression levels in liver tissue
Guogen Mao et al.
The Journal of biological chemistry, 294(38), 14009-14019 (2019-08-01)
Lipid phosphate phosphatase 3 (LPP3), encoded by the PLPP3 gene, is an integral membrane enzyme that dephosphorylates phosphate esters of glycero- and sphingophospholipids. Cell surface LPP3 can terminate the signaling actions of bioactive lysophosphatidic acid (LPA) and sphingosine 1 phosphate

Articles

Discover Bioactive Small Molecules for Lipid Signaling Research

Discover Bioactive Small Molecules for Lipid Signaling Research

Discover Bioactive Small Molecules for Lipid Signaling Research

Discover Bioactive Small Molecules for Lipid Signaling Research

Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.

Contact Technical Service