Skip to Content
Merck
All Photos(1)

Key Documents

11-1080

Sigma-Aldrich

Furfural

SAJ first grade, ≥99.0%

Synonym(s):

2-Furaldehyde, 2-Furancarboxaldehyde

Sign Into View Organizational & Contract Pricing


About This Item

Empirical Formula (Hill Notation):
C5H4O2
CAS Number:
Molecular Weight:
96.08
Beilstein:
105755
EC Number:
MDL number:
UNSPSC Code:
12352114
PubChem Substance ID:
grade:
SAJ first grade
Assay:
≥99.0%
application(s):
microbiology

grade

SAJ first grade

Assay

≥99.0%

form

liquid

availability

available only in Japan

application(s)

microbiology

SMILES string

O=Cc1ccco1

InChI

1S/C5H4O2/c6-4-5-2-1-3-7-5/h1-4H

InChI key

HYBBIBNJHNGZAN-UHFFFAOYSA-N

Looking for similar products? Visit Product Comparison Guide

Signal Word

Danger

Hazard Classifications

Acute Tox. 2 Inhalation - Acute Tox. 3 Oral - Acute Tox. 4 Dermal - Aquatic Chronic 3 - Carc. 2 - Eye Irrit. 2 - Flam. Liq. 3 - Skin Irrit. 2 - STOT SE 3

Target Organs

Respiratory system

Storage Class Code

3 - Flammable liquids

WGK

WGK 2

Flash Point(F)

136.4 °F - closed cup

Flash Point(C)

58 °C - closed cup

Personal Protective Equipment

dust mask type N95 (US), Eyeshields, Gloves

Choose from one of the most recent versions:

Certificates of Analysis (COA)

Lot/Batch Number

Don't see the Right Version?

If you require a particular version, you can look up a specific certificate by the Lot or Batch number.

Already Own This Product?

Find documentation for the products that you have recently purchased in the Document Library.

Visit the Document Library

Arvind H Jadhav et al.
Bioresource technology, 132, 342-350 (2013-02-26)
Acidity modified silver exchanged silicotungstic acid (AgSTA) catalyst was prepared and characterized by X-ray diffraction, FT-IR spectroscopy, Raman spectroscopy, FT-IR pyridine adsorption, SEM imaging, EDX mapping, and antimicrobial activity was also tested. The catalytic activity was evaluated for the dehydration
Jianghua He et al.
ChemSusChem, 6(1), 61-64 (2012-12-12)
It's nano: Small and uniform chromium nanoparticles, either preformed or generated in situ, effectively catalyze the conversion of glucose into 5-hydroxymethyl furfural. The results compare favorably with those achieved by using a catalyst system based on divalent CrCl(2) in ionic
Tim Ståhlberg et al.
ChemSusChem, 4(4), 451-458 (2011-01-29)
The synthesis of 5-(hydroxymethyl)furfural (HMF) in ionic liquids is a field that has grown rapidly in recent years. Unique dissolving properties for crude biomass in combination with a high selectivity for HMF formation from hexose sugars make ionic liquids attractive
Lilong Zhou et al.
Bioresource technology, 129, 450-455 (2012-12-26)
A new kind of bifunctional ionic liquid catalysts was synthesized to degrade microcrystalline cellulose in [BMIM]Cl at atmospheric pressure. The effects of reaction temperature, amount of catalysts, reaction time, ionic liquid purity and cellulose concentration on conversion were investigated. At
Vinit Choudhary et al.
Journal of the American Chemical Society, 135(10), 3997-4006 (2013-02-26)
5-(Hydroxymethyl)furfural (HMF) and levulinic acid production from glucose in a cascade of reactions using a Lewis acid (CrCl3) catalyst together with a Brønsted acid (HCl) catalyst in aqueous media is investigated. It is shown that CrCl3 is an active Lewis

Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.

Contact Technical Service