Skip to Content
Merck
All Photos(2)

Key Documents

514365

Sigma-Aldrich

Copper(II) acetylacetonate

≥99.9% trace metals basis

Synonym(s):

2,4-Pentanedione copper(II) derivative, Bis(2,4-pentanedionato)copper(II), Cu(acac)2, Cupric acetylacetonate

Sign Into View Organizational & Contract Pricing


About This Item

Linear Formula:
Cu(C5H7O2)2
CAS Number:
Molecular Weight:
261.76
Beilstein:
4157957
EC Number:
MDL number:
UNSPSC Code:
12352103
PubChem Substance ID:
NACRES:
NA.23

Quality Level

Assay

≥99.9% trace metals basis

form

powder

reaction suitability

core: copper

mp

284-288 °C (dec.) (lit.)

SMILES string

CC(=O)\C=C(\C)O[Cu]O\C(C)=C/C(C)=O

InChI

1S/2C5H8O2.Cu/c2*1-4(6)3-5(2)7;/h2*3,6H,1-2H3;/q;;+2/p-2/b2*4-3-;

InChI key

QYJPSWYYEKYVEJ-FDGPNNRMSA-L

Looking for similar products? Visit Product Comparison Guide

General description

Copper(II) acetylacetonate is an organometallic coordination compound widely used as a catalyst for several organic reactions, including oxidation, cross-coupling, and polymerization reactions. It is also a precursor to fabricate metal organic frameworks(MOFs) and nanomaterials.

Application

Copper(II) acetylacetonate can be used as:
  • A precursor for atomic layer deposition of copper oxide for all-oxide photovoltaics.
  • A catalyst for the aziridination of styrene.
  • A catalyst for Huisgen-Click reaction to synthesize 1,2,3-triazoles.

Pictograms

Exclamation mark

Signal Word

Warning

Hazard Statements

Hazard Classifications

Eye Irrit. 2 - Skin Irrit. 2 - STOT SE 3

Target Organs

Respiratory system

Storage Class Code

11 - Combustible Solids

WGK

WGK 3

Flash Point(F)

Not applicable

Flash Point(C)

Not applicable

Personal Protective Equipment

dust mask type N95 (US), Eyeshields, Gloves

Choose from one of the most recent versions:

Certificates of Analysis (COA)

Lot/Batch Number

Don't see the Right Version?

If you require a particular version, you can look up a specific certificate by the Lot or Batch number.

Already Own This Product?

Find documentation for the products that you have recently purchased in the Document Library.

Visit the Document Library

Atomic layer deposition of copper oxide using copper (II) acetylacetonate and ozone
Mari Endresen Alnes, et al.
Chem. Vap. Deposition, 18, 173-178 (2012)
Copper(II) acetylacetonate anchored onto an activated carbon as a heterogeneous catalyst for the aziridination of styrene
Ana Rosa Silva, et al.
Catalysis Today, 102-103, 154-159 (2005)
David N Paglia et al.
Journal of orthopaedic research : official publication of the Orthopaedic Research Society, 30(12), 1971-1978 (2012-06-02)
This study quantified the effects of local intramedullary delivery of an organic vanadium salt, which may act as an insulin-mimetic on fracture healing. Using a BB Wistar rat femoral fracture model, local vanadyl acetylacetonate (VAC) was delivered to the fracture
Yanfang Li et al.
Dalton transactions (Cambridge, England : 2003), 41(13), 3807-3816 (2012-02-24)
Biscyclometalated iridium(III) complexes with an ancillary acetylacetone ligand, Ir(L)(2)(acac), (L = 2-(benzo[b]thiophen-2-yl)pyridine (btp), 1-phenylisoquinoline (piq), 2-phenylbenzothiazole (bt), 2-phenylpyridine (ppy), acac = deprotonated acetylacetone), demonstrate spectroscopic changes in their UV-Vis absorption and luminescent emission under acidic conditions. Such changes were found
Chih-Chia Huang et al.
Chemical communications (Cambridge, England), (23)(23), 3360-3362 (2009-06-09)
A general approach involving a solvothermal method was developed to synthesize a series of silicate nanoshells (<100 nm) where both Gd silicate and Gd silicate:Eu nanoshells were further demonstrated to exhibit dual-modality MRI and optical imaging functions.

Articles

Copper metal deposition processes are an essential tool for depositing interconnects used in microelectronic applications, giving group 11 (coinage metals: Copper, Silver, and Gold) an important place in atomic layer deposition (ALD) process development.

The diversity of applications and nanostructured materials accessible using ultrasonic spray methods are highlighted in this article.

The diversity of applications and nanostructured materials accessible using ultrasonic spray methods are highlighted in this article.

The diversity of applications and nanostructured materials accessible using ultrasonic spray methods are highlighted in this article.

See All

Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.

Contact Technical Service