Saltar al contenido
Merck

Induction of NUPR1 and AP‑1 contributes to the carcinogenic potential of nickel.

Oncology reports (2021-03-03)
Anthony Murphy, Nirmal Roy, Hong Sun, Chunyuan Jin, Max Costa
RESUMEN

Nickel (Ni) is carcinogenic to humans, and causes cancers of the lung, nasal cavity, and paranasal sinuses. The primary mechanisms of Ni‑mediated carcinogenesis involve the epigenetic reprogramming of cells and the ability for Ni to mimic hypoxia. However, the exact mechanisms of carcinogenesis related to Ni are obscure. Nuclear protein 1 (NUPR1) is a stress‑response gene overexpressed in cancers, and is capable of conferring chemotherapeutic resistance. Likewise, activator protein 1 (AP‑1) is highly responsive to environmental signals, and has been associated with cancer development. In this study, NUPR1 was found to be rapidly and highly induced in human bronchial epithelial (BEAS‑2B) cells exposed to Ni, and was overexpressed in Ni‑transformed BEAS‑2B cells. Similarly, AP‑1 subunits, JUN and FOS, were induced in BEAS‑2B cells following Ni exposure. Knockdown of JUN or FOS was found to significantly suppress NUPR1 induction following Ni exposure, demonstrating their importance in NUPR1 transactivation. Reactive oxygen species (ROS) are known to induce AP‑1, and Ni has been shown to produce ROS. Treatment of BEAS‑2B cells with antioxidants was unable to prevent NUPR1 induction by Ni, suggesting that NUPR1 induction by Ni relies on mechanisms other than oxidative stress. To determine how NUPR1 is transcriptionally regulated following Ni exposure, the NUPR1 promoter was cloned and inserted into a luciferase gene reporter vector. Multiple JUN binding sites reside within the NUPR1 promoter, and upon deleting a JUN binding site in the upstream most region within the NUPR1 promoter using site‑directed mutagenesis, NUPR1 promoter activity was significantly reduced. This suggests that AP‑1 transcriptionally regulates NUPR1. Moreover, knockdown of NUPR1 significantly reduced colony formation and anchorage‑independent growth in Ni‑transformed BEAS‑2B cells. Therefore, these results collectively demonstrate a novel mechanism of NUPR1 induction following Ni exposure, and provide a molecular basis by which NUPR1 may contribute to lung carcinogenesis.

MATERIALES
Referencia del producto
Marca
Descripción del producto

Sigma-Aldrich
(±)-α-Tocoferol, synthetic, ≥96% (HPLC)
Sigma-Aldrich
(−)-Epigallocatechin gallate, ≥95%
Sigma-Aldrich
Agarosa, baja temperatura de gelificación
Sigma-Aldrich
MISSION® esiRNA, targeting human NUPR1
Sigma-Aldrich
MISSION® esiRNA, targeting human FOS