Saltar al contenido
Merck

MAP1B Light Chain Modulates Synaptic Transmission via AMPA Receptor Intracellular Trapping.

The Journal of neuroscience : the official journal of the Society for Neuroscience (2017-09-15)
Rocío Palenzuela, Yolanda Gutiérrez, Jonathan E Draffin, Argentina Lario, Marion Benoist, José A Esteban
RESUMEN

The regulated transport of AMPA-type glutamate receptors (AMPARs) to the synaptic membrane is a key mechanism to determine the strength of excitatory synaptic transmission in the brain. In this work, we uncovered a new role for the microtubule-associated protein MAP1B in modulating access of AMPARs to the postsynaptic membrane. Using mice and rats of either sex, we show that MAP1B light chain (LC) accumulates in the somatodendritic compartment of hippocampal neurons, where it forms immobile complexes on microtubules that limit vesicular transport. These complexes restrict AMPAR dendritic mobility, leading to the intracellular trapping of receptors and impairing their access to the dendritic surface and spines. Accordingly, increasing MAP1B-LC expression depresses AMPAR-mediated synaptic transmission. This effect is specific for the GluA2 subunit of the AMPAR and requires glutamate receptor interacting protein 1 (GRIP1) interaction with MAP1B-LC. Therefore, MAP1B-LC represents an alternative link between GRIP1-AMPARs and microtubules that does not result in productive transport, but rather limits AMPAR availability for synaptic insertion, with a direct impact on synaptic transmission.SIGNIFICANCE STATEMENT The ability of neurons to modify their synaptic connections, known as synaptic plasticity, is accepted as the cellular basis for learning and memory. One mechanism for synaptic plasticity is the regulated addition and removal of AMPA-type glutamate receptors (AMPARs) at excitatory synapses. In this study, we found that a microtubule-associated protein, MAP1B light chain (MAP1B-LC), participates in this process. MAP1B-LC forms immobile complexes along dendrites. These complexes limit intracellular vesicular trafficking and trap AMPARs inside the dendritic shaft. In this manner, MAP1B restricts the access of AMPARs to dendritic spines and the postsynaptic membrane, contributing to downregulating synaptic transmission.

MATERIALES
Referencia del producto
Marca
Descripción del producto

Sigma-Aldrich
Anticuerpo anti-tubulina acetilada, monoclonal de ratón antibody produced in mouse, clone 6-11B-1, purified from hybridoma cell culture
Sigma-Aldrich
Anticuerpo anti-receptor 2 de glutamato, extracelular, clon 6C4, clone 6C4, Chemicon®, from mouse
Sigma-Aldrich
Anticuerpo anti-tubulina destirosinada, Chemicon®, from rabbit
Sigma-Aldrich
Monoclonal Anti-Tubulin, Tyrosine antibody produced in mouse, clone TUB-1A2, ascites fluid
Sigma-Aldrich
Anticuerpo anti-GluR1-NT (NT), clon RH95, clone RH95, from mouse
Sigma-Aldrich
Anti-GRIP-1 Antibody, CT, from rabbit, purified by affinity chromatography