Saltar al contenido
Merck

483265

Sigma-Aldrich

Antimony(III) acetate

99.99% trace metals basis

Sinónimos:

Antimony acetate, Antimony triacetate, Triacetoxystibine

Iniciar sesiónpara Ver la Fijación de precios por contrato y de la organización


About This Item

Fórmula lineal:
(CH3CO2)3Sb
Número de CAS:
Peso molecular:
298.89
Número CE:
Número MDL:
Código UNSPSC:
12352103
ID de la sustancia en PubChem:
NACRES:
NA.23

Ensayo

99.99% trace metals basis

Formulario

solid

idoneidad de la reacción

core: antimony
reagent type: catalyst

mp

126-131 °C (lit.)

densidad

1.22 g/mL at 25 °C (lit.)

cadena SMILES

CC(=O)O[Sb](OC(C)=O)OC(C)=O

InChI

1S/3C2H4O2.Sb/c3*1-2(3)4;/h3*1H3,(H,3,4);/q;;;+3/p-3

Clave InChI

JVLRYPRBKSMEBF-UHFFFAOYSA-K

Categorías relacionadas

Descripción general

Antimony(III) Acetate is an is a high-purity compound (99.9% trace metals basis) that is widely used as a precursor in chemical vapor deposition (CVD) and Sol-gel atomic layer deposition (ALD) methods for the fabrication of antimony-based thin films, which are used in optoelectronic devices, including solar cells, and photodetectors. It is also employed as a dopant in semiconductor materials to modify their electrical and optical properties. Additionally, it serves as a catalyst in polymerization reactions and utilized in the synthesis of antimony-based nanoparticles and nanostructures, which find applications in energy storage systems such as batteries and supercapacitors.

Aplicación

  • New Complexes of Antimony(III) with Tridentate O,E,O-Ligands: Explores new antimony(III) complexes providing insights into their bonding and potential applications in materials science (U Böhme, M Herbig, 2023).
  • Antimony (III) acetate as a catalyst for synthesis of xanthenes: Details the use of antimony(III) acetate as a catalyst in the synthesis of biologically active compounds, showcasing its efficiency in organic chemistry (F Hakimi, A Hassanabadi, 2015).

Características y beneficios

Antimony(III) acetate exhibits:
  • 99.99% trace metals basis (<150 ppm) ensures minimal contamination with consistent performance in critical applications, leading to better outcomes.
  • Suitable catalyst to produce synthetic fibres. It is moderately soluble in water
  • Suitable for solvent free reactions.

Pictogramas

Exclamation markEnvironment

Palabra de señalización

Warning

Frases de peligro

Clasificaciones de peligro

Acute Tox. 4 Inhalation - Acute Tox. 4 Oral - Aquatic Chronic 2

Código de clase de almacenamiento

11 - Combustible Solids

Clase de riesgo para el agua (WGK)

WGK 2

Punto de inflamabilidad (°F)

Not applicable

Punto de inflamabilidad (°C)

Not applicable


Elija entre una de las versiones más recientes:

Certificados de análisis (COA)

Lot/Batch Number

¿No ve la versión correcta?

Si necesita una versión concreta, puede buscar un certificado específico por el número de lote.

¿Ya tiene este producto?

Encuentre la documentación para los productos que ha comprado recientemente en la Biblioteca de documentos.

Visite la Librería de documentos

Dandan Xie et al.
Nanoscale, 10(30), 14546-14553 (2018-07-20)
(Ag,Sn) co-doped Cu3SbSe4 nanocrystals are obtained via a facile microwave-assisted solvothermal method, and their thermoelectric properties are investigated in the temperature range from 300 K to 623 K. Sn-doping on Sb sites dramatically increases the carrier concentration and thus the
Yosra Chebbi et al.
Polymers, 11(3) (2019-04-10)
In this study, the synthesis of poly(ethylene furanoate) (PEF), catalyzed by five different catalysts-antimony acetate (III) (Sb Ac), zirconium (IV) isopropoxide isopropanal (Zr Is Ip), antimony (III) oxide (Sb Ox), zirconium (IV) 2,4-pentanedionate (Zr Pe) and germanium (IV) oxide (Ge
Wasim J Mir et al.
Scientific reports, 7(1), 9647-9647 (2017-08-31)
We investigate the potential use of colloidal nanoplates of Sb
Tianxin Bai et al.
Advanced materials (Deerfield Beach, Fla.), 33(8), e2007215-e2007215 (2021-01-21)
The colloidal synthesis of a new type of lead-free halide quadruple-perovskite nanocrystals (NCs) is reported. The photoluminescence quantum yield and charge-carrier lifetime of quadruple-perovskite NCs can be enhanced by 96 and 77-fold, respectively, via metal alloying. Study of charge-carrier dynamics
Bin Zhou et al.
Chemistry (Weinheim an der Bergstrasse, Germany), 21(31), 11143-11151 (2015-06-23)
We report an efficient approach to the synthesis of AgSbS2 nanocrystals (NCs) by colloidal chemistry. The size of the AgSbS2 NCs can be tuned from 5.3 to 58.3 nm with narrow size distributions by selection of appropriate precursors and fine control

Nuestro equipo de científicos tiene experiencia en todas las áreas de investigación: Ciencias de la vida, Ciencia de los materiales, Síntesis química, Cromatografía, Analítica y muchas otras.

Póngase en contacto con el Servicio técnico